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Abstract

Diffusion models have achieved remarkable success in the
image and video generation tasks. Nevertheless, they often re-
quire a large amount of memory and time overhead during in-
ference, due to the complex network architecture and consid-
erable number of timesteps for iterative diffusion. Recently,
the post-training quantization (PTQ) technique has proved
a promising way to reduce the inference cost by quantizing
the float-point operations to low-bit ones. However, most of
them fail to tackle with the large variations in the distribution
of activations across distinct channels and timesteps, as well
as the inconsistent of input between quantization and infer-
ence on diffusion models, thus leaving much room for im-
provement. To address the above issues, we propose a novel
method dubbed Timestep-Channel Adaptive Quantization for
Diffusion Models (TCAQ-DM). Specifically, we develop a
timestep-channel joint reparameterization (TCR) module to
balance the activation range along both the timesteps and
channels, facilitating the successive reconstruction proce-
dure. Subsequently, we employ a dynamically adaptive quan-
tization (DAQ) module that mitigate the quantization error
by selecting an optimal quantizer for each post-Softmax lay-
ers according to their specific types of distributions. More-
over, we present a progressively aligned reconstruction (PAR)
strategy to mitigate the bias caused by the input mismatch.
Extensive experiments on various benchmarks and distinct
diffusion models demonstrate that the proposed method sub-
stantially outperforms the state-of-the-art approaches in most
cases, especially yielding comparable FID metrics to the full
precision model on CIFAR-10 in the W6A6 setting, while en-
abling generating available images in the W4A4 settings.

Extended version — https://dr-jiaxin-chen.github.io/page/

Introduction
Diffusion models (Ho, Jain, and Abbeel 2020) have emerged
as one of the most prevailing generative models, with a wide
range of applications including image generation (Ho, Jain,
and Abbeel 2020; Song, Meng, and Ermon 2021), image
translation (Su et al. 2023; Tumanyan et al. 2023), super-
resolution (Li et al. 2022; Gao et al. 2023; Wang et al.
2024b), and video generation (Ho et al. 2022; Chen et al.
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Figure 1: (a) Fluctuated activations per channels
and timesteps in the convolutional layers (e.g.
up.0.block.0.conv1 of DDIM). (b) Dynamic changes of
activation distributions in the post-Softmax layer (e.g.
down.1.attn.0 of DDIM) in distinct timesteps. (c) Misalign-
ment between the intermediate data of the reconstruction
stage in the quantization process and those in the inference
process.

2024). They gradually transform noises into high-quality
images or video clips through an iterative diffusion pro-
cess, based on a noise estimation network and a denoising
sampler. Nevertheless, due to the complex network structure
and the massive network forward propagation required dur-
ing dozens or even hundreds of iterative timesteps, existing
models are generally computationally expensive, making it
inefficient during inference.

Many efforts have been made to accelerate the diffusion
model, which can be roughly divided into two categories.
The first category of methods (Chung, Sim, and Ye 2022;
Lyu et al. 2022; Franzese et al. 2023) focuses on decreasing
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the number of sampling timesteps. It is capable of linearly
reducing the inference time cost without modifying the net-
work structure, which however fails to decrease the model
size. Alternatively, the second category of methods aims to
expedite the inference through compressing the neural net-
work by pruning (Castells et al. 2024; Zhang et al. 2024) and
quantization (Shang et al. 2023; Wang et al. 2024a; Huang
et al. 2024b).

In this paper, we mainly investigate the post-training
quantization (PTQ) technique for diffusion models, consid-
ering that it reduces both the storage and inference time cost
by mapping the float-point weights and activations of the
networks into low-bit integers (Li et al. 2021; Nagel et al.
2020; Kuzmin et al. 2022; Dettmers et al. 2024), and is
feasible for fast deployment without expensive re-training.
Several works have attempted to explore the PTQ tech-
nique for diffusion models by either collecting calibration
datasets across all timesteps (Shang et al. 2023; Li et al.
2023b; Huang et al. 2024b) or correcting the accumulation
errors on iterative sampling(He et al. 2024; Yao et al. 2024).
Nevertheless, most of them suffer from substantial perfor-
mance degradation especially when quantizing under low
bit-widths, as they fails to take the following characteristics
of diffusion models into consideration based on our empir-
ical observations: 1) the range of activation in the convo-
lutions layers often drastically fluctuates in both channels
and timesteps as displayed in Fig. 1(a), which is prone to
incur large quantization errors; 2) the distribution of activa-
tions in the post-Softmax layers dynamically changes as the
timestep decreases, and gradually exhibits a power-law-like
shape during the diffusion process as shown in Fig. 1(b),
resulting in nonnegligible quantization loss as most exiting
works utilize one fix quantizer; 3) existing reconstruction-
based quantization methods often utilizes the output of the
quantized model in the precedent block as input for recon-
struction stage, which is not consistent with the inference
process that adopt iterative sampling strategy as shown in
Fig. 1(c), inevitably introducing bias and leaving much room
for improvement.

To address the above issues, we propose a novel PTQ
approach dubbed Timestep-Channel Adaptive Quantization
for Diffusion Models (TCAQ-DM). As displayed in Fig. 2,
we first develop a timestep-channel joint reparameteriza-
tion (TCR) module tailored for quantizing the convolutional
layer with severely fluctuated activations. This module uni-
formly splits the overall timesteps into groups, and in each
group balances the originally unconstrained activations by
employing a channel-wise reparameterization transforma-
tion with timestep-aware average weighting. Subsequently,
we present a dynamically adaptive quantizer (DAQ) specifi-
cally designed for quantizing the post-Softmax activations
with timestep-varying distributions (Clauset, Shalizi, and
Newman 2009). It establishes an estimator to assess the like-
lihood of the activations from a particular timestep obey-
ing the power-law distribution on each layer. The timesteps
with high likelihood are assigned a log2 quantizer (Li et al.
2023c; Lin et al. 2022), which proved effective in quantiz-
ing the activations with power-law distributions, and those
with low likelihood are dynamically handled by a uniform

quantizer that is simple and efficient. Finally, to address the
misalignment issue, we employ a progressively aligned re-
construction (PAR) strategy by incorporating the quantized
inputs in the reconstruction stage of quantization process,
in order to stay consistent with the inference process, thus
further boosting the performance.

The main contributions of our work lie in three-fold:

• We propose a novel PTQ approach dubbed Timestep-
Channel Adaptive Quantization for Diffusion Models
(TCAQ-DM), by flexibly adapting to varying activa-
tion ranges and distributions in distinct channels and
timesteps, and aligning the intermediate data in the quan-
tization process with those in the inference process.

• We design a timestep-channel joint reparameterization
(TCR) module to mitigate the influence of fluctuated ac-
tivation ranges on quantization, and a dynamically adap-
tive quantizer (DAQ) to strengthen its flexibility in deal-
ing with timestep-varying activation distributions in the
post-Softmax layer, which reduces the quantization error
especially under low bit-widths. We also develop a pro-
gressively aligned reconstruction (PAR) strategy to avoid
the data inconsistency between quantization and infer-
ence, further boosting the performance.

• We conduct extensive experiments and ablation studies
on various datasets and representative diffusion mod-
els, and demonstrate that our method remarkably out-
performs the state-of-the-art PTQ approaches for dif-
fusion models in most cases, especially under low bit-
widths. Particularly, for the challenging W4A4 setting,
our method generate available results, while most com-
pared PTQ approaches yield nearly collapsed perfor-
mance.

Related Work
Existing approaches for accelerating diffusion models
roughly fall into two categories: building efficient diffusion
models by reducing the sampling steps and compressing the
network structures of diffusion models. For the later, we fo-
cus on the quantization based methods, and summarize the
related works as below.

Efficient Diffusion Model
Diffusion models gradually apply Gaussian noise to real data
in an iteratively process, as the preliminaries are provided
in (Song, Meng, and Ermon 2021; He et al. 2024). For this
process is time-consuming, many approaches have been pro-
posed to obtain an efficient diffusion model by diminish-
ing the sampling steps or skip some operation in inference
time, which can be further divided into the training-based
methods and the training-free ones. The former reduces the
steps by model distillation (Luhman and Luhman 2021; Sali-
mans and Ho 2022; Huang et al. 2024a) or sample trajectory
learning (Lam et al. 2022; Watson et al. 2022; Zhao et al.
2024). And the later usually directly designs efficient sam-
plers on pre-trained diffusion models, by developing implicit
samplers (Song, Meng, and Ermon 2021), customized SDE,
ODE solvers (Kim and Ye 2023; Zhang and Chen 2023;
Zhou et al. 2024), or automatic search (Li et al. 2023a).
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Some methods also develop the cache-based strategies (Ma,
Fang, and Wang 2024). All of these method diminish the
inference time in the timestep dimension without consider-
ing the delay in single model forward step. Despite decreas-
ing the time cost, these methods fail to reduce the diffusion
model size, thus still suffering from the high computational
complexity and extensive storage consumption.

Model Quantization
In contrast to the aforementioned approaches that focus on
reducing the number of sampling steps, model quantization
takes a different route by aiming to compress diffusion neu-
ral networks. This is achieved by mapping the floating-point
weights and activations of the network into low-bit represen-
tations. The primary objective of this quantization process is
to significantly decrease both inference latency and memory
overhead associated with the model’s operation. By convert-
ing high-precision values into lower-bit formats, we can en-
hance the efficiency of the model while maintaining its per-
formance. We provide a comprehensive review of existing
model quantization methods and their respective contribu-
tions to this field as below.

General Quantization Methods Current quantization
methods for general purpose mainly consists of the
quantization-aware training (QAT) (Gong et al. 2019; Zhang
et al. 2023; Chu, Li, and Zhang 2024) and the post-training
quantization (PTQ) (Nagel et al. 2020; Li et al. 2021; Wei
et al. 2022; Wu et al. 2024). The QAT methods simulate
the quantization process during the training phase, with the
goal of minimizing quantization error. While these meth-
ods often achieve high accuracy even at low bit-widths, they
come with significant training costs, as they necessitate the
retraining of all weights using extensive large-scale train-
ing datasets. In contrast, PTQ methods take a more direct
approach by quantizing weights and activations based on
a smaller-scale calibration set. This approach does not in-
volve fine-tuning the weights during the quantization pro-
cess, making PTQ considerably more efficient in terms of
both data and computational requirements. By leveraging a
limited amount of calibration data, PTQ methods can signif-
icantly reduce the associated computational costs while still
delivering competitive performance.

PTQ for Diffusion Models Directly applying the general
quantization methods to diffusion models usually results in
poor performance. The primary reason for this discrepancy
is that diffusion models employ a distinct inference method
compared to traditional models. The variation in activation
distributions across timesteps complicates the accurate esti-
mation of quantization parameters. To deal with this prob-
lem, PTQ4DM (Shang et al. 2023) collects calibration data
from various timesteps, and makes the first attempt on quan-
tizing diffusion models in 8 bit-width with slight perfor-
mance degradation. Q-Diffusion (Li et al. 2023b) further
enhances the performance by dividing the skip connection
layer and propose a novel sampling strategy about calibra-
tion datasets. PTQD (He et al. 2024) eliminates the accumu-
lation errors by correcting samplers and collecting the output
at each timestep for calibration, proposing a novel vision of

diminishing the quantiztaion errors. APQ-DM (Wang et al.
2024a) designs a dynamic grouping strategy and chooses a
calibration set according to the structural risk minimization
principle. The grouping strategy is usually adopted in future
works. TFMQ-DM (Huang et al. 2024b) mitigates the infor-
mation bias at different timesteps caused by quantization and
proposes a TIB block to protect the timestep information.
PCR (Tang et al. 2024) proposes a progressive quantization
method to avoid the accumulation of errors during quanti-
zation for diffusion models, along with an activation relax-
ing strategy to reduce errors in sensitive modules. TMPQ-
DM (Sun et al. 2024) propose a new vision of quantization
for diffusion models, jointly optimizing timesteps reduction
and model quantization to achieve a superior performance-
efficiency trade-off.. However, these methods fail to jointly
handle the fluctuated activation ranges and distributions in
distinct timesteps and channels, and neglect the inconsis-
tency between the inputs of the reconstruction stage in the
quantization process and those in the inference process, thus
inclining to incur large quantization errors.

Methodology
Framework Overview
Our method is based on PTQ that aims to compute the scal-
ing factor s and the zero point z, and map the float-point data
to integers via the following formula:

x̂ = Φ
(
⌊x
s
⌉+ z, 0, 2bit − 1

)
, (1)

where x̂ denotes the quantized value of the float-point
weights or activations x, s and z denote the scaling factor
and zero point, respectively, Φ indicates the function that
clips the value range to [0, 2bit − 1], ⌊·⌉ denotes the round-
ing operation, and bit is the bit-width. The primary objective
of model quantization is to identify the optimal parameters s
and z that minimize errors. Generally, by following existing
works (Li et al. 2023b; Huang et al. 2024b), the overall quan-
tization process includes the initialization stage that roughly
search the quantization parameters, and the reconstruction
stage that further refine the quantization parameters.

As shown in Fig. 2, different from current PTQ ap-
proaches, we propose three novel components, including
the timestep-channel joint reparameterization (TCR) and the
dynamically adaptive quantizer (DAQ) for the initialization
stage, as well as the progressively aligned reconstruction
(PAR) strategy for the reconstruction stage. TCR simultane-
ously mitigates the fluctuations of activation ranges in both
distinct timesteps and channels in the specific convolutional
layers, and DAQ adapts to varying activation distribution in
the post-Softmax layers, both of which facilitate reducing
the quantization error. PAR further boosts the performance
by iteratively generating a calibration set that is aligned with
the data flow in the inference process, which further dimin-
ish the loss in reconstruction stage. The technical details are
described in the rest part of this section.

Timestep-Channel Joint Reparameterization
The activations of diffusion models’ convolution layers ex-
hibit significant fluctuation along the both timesteps and
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Figure 2: Overview of our proposed method. In the initialization stage, we develop the timestep-channel joint reparameterization
(TCR) and the dynamically adaptive quantizer (DAQ) to mitigate the fluctuated activation ranges in the convolutional layers,
and the timestep-varying activation distributions in the post-Softmax layers, respectively. In the reconstruction stage, we design
the progressively aligned reconstruction (PAR) strategy to further improve the generation performance by aligning the data flow
in the quantization process with that in the inference process.

channels. The interplay between these two dimensions ren-
ders activation quantization considerably more arduous. To
address this issue, we firstly group the activation quantiza-
tion parameters uniformly under the inference timesteps:

S = {s0, s1, ...sT−1}, Z = {z0, z1, ...zT−1}, (2)
where T denotes the denoising step, S and Z represent the
scaling factor and zero point of the activation quantizer, re-
spectively. We assign each inference timestep to a specific
group with different quantization parameters. It is notewor-
thy that the time cost of searching S and Z can be substan-
tially diminished when leveraging a less-step sampling tech-
nique.

In addition to the timestep dimension, post-training quan-
tization (PTQ) methods for diffusion models also suffer
from activation variability across different channels. In-
spired by recent quantization works in Vision Transformers
(ViT) (Li et al. 2023c), we propose timestep-channel joint
reparameterization module to solve this problem. This mod-
ule rescales the input range by aggregating the values across
all timesteps. Specifically, for a particular convolution layer
with weights W and input Xt ∈ RN×C×W×H of timestep t,
we aim to find a scaling vector rt ∈ RC , then reparameterize
the activation and corresponding weight as:

Xt′

:,j = Xt
:,j ⊘ rtj , W

′

:,j = W:,j ⊙ rtj , (3)
where ⊘ and ⊙ denote the broadcast division and multipli-
cation, respectively. For a convolution layer, which is equiv-

alent to a linear affine operation, this reparameterization will
retain the output while shifting the value range from activa-
tions to weights. A tailored rt for activation Xt aligns acti-
vations between channels:

rtj = max(X:,j)/s
t
tar, (4)

where sttar is a pre-specific target range of timestep t. How-
ever, diffusion models have different activations between
timesteps while sharing the same weights. Rescaling for
each timestep will produce multiple weights, causing a high
storage cost. Therefore, it is necessary to combine rt of all
timesteps to general scaling vector r.

When performing reparameterization, we find some of the
channels have a small value range in most of the denois-
ing steps, but suddenly increase in a few steps and become
outliers. To limit these channels’ value range, we first set
the minimum of the maximum value of all channels as the
rescale target st, to ensure that the value range of all chan-
nels will not be further expanded. Then, we use the maxi-
mum value of each channel as the weight to sum the activa-
tion across all timesteps, ensuring the scaling vector on the
timestep with larger activation receives more attention. The
final formula is shown as:

sttar = min(max(Xt
:,d)1≤d≤D),

rtd =
max(Xt

:,d)

sttar
, rsd =

∑
t r

t
d∗max(Xt

:,d)∑
t max(Xt

:,d)
,

X̃t
:,d = Xt

:,d ⊘ rsd, W̃:,d = W:,d ⊙ rsd.

(5)
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Since this method will enlarge the weight values, which
may lead to insignificant performance improvement when
applying weight relative low-bit quantization like W4A8, we
use a hyper-parameter Rtru to truncate the scaling vector to
a limit range in these settings.

Dynamically Adaptive Quantizer
The activation of post-Softmax often shows a power-law dis-
tribution. The uniform quantizer cannot balance the quanti-
zation between the long-tail and the small value peak of this
type of distribution, which often leads to performance degra-
dation. Previous methods (Lin et al. 2022) attempt to use a
log2 quantizer to fit the feature of the post-Softmax. It maps
the float numbers to a logarithmic function with a base of 2:

x̂ = Φ(⌊− log2
x

s
⌉, 0, 2bit−1), x̃ = s ∗ 2−x̂, (6)

where x̂ and x̃ indicates quantized value and dequantized
value of x, respectively.

However, the post-Softmax activation in diffusion models
also suffers from timestep variance. In the early denoising
steps of certain blocks, activations is only distributed within
a limited range, where the log quantizer will lead to a larger
quantization error. Directly applying the log2 quantizer in
diffusion models may even perform poorly in high-bit set-
ting, as shown in Table 6. Therefore, we propose a dynam-
ically adaptive quantizer that could select whether to use
the log2 quantizer for a specific timestep of a post-Softmax
layer, based on its mathematical properties. Specifically, we
use the Maximum Likelihood Estimation method to fit the
each layers activation on every timestep to a power-law dis-
tribution (Clauset, Shalizi, and Newman 2009):

P (X ≥ x) = cx−α. (7)

Since the activations of model could be collected in ad-
vance, this operation could be conducted offline. Then we
calculate the ratio of the likelihood estimation results for
the power-law distribution and other distributions (e.g., log-
normal or exponential) as Rg , and perform log2 quantizer to
the specific timestep where the ratio is greater than zero:

x̂ =

{
⌊ x
sg

+ zg⌉, if Rg ≤ 0;

⌊− log2
x
sg
⌉, if Rg > 0.

(8)

It is worth noting that DAQ performs offline, and only
introduces a small amount of extra computational overhead,
roughly 3% of the overall cost, which is affordable in our
implementation.

Progressively Aligned Reconstruction
Existing post-training quantization (PTQ) methods fre-
quently incorporate a block reconstruction stage aimed at
enhancing overall performance. However, the iterative infer-
ence process inherent to diffusion models introduces a sig-
nificant inconsistency issue between the reconstruction stage
and the inference process, as illustrated in Figure 1c. When
existing PTQ methods are applied to diffusion models, they
tend to generate biased input distributions. This bias arises

Method Bit-width FID (↓) IS (↑)
FP model W32A32 4.14 9.12
PTQ4DM W4A32 5.65 9.02

Q-Diffusion W4A32 5.09 8.78
TFMQ-DM W4A32 4.73 9.14

Ours W4A32 4.28 9.09
PTQ4DM W8A8 5.69 9.31

Q-Diffusion* W8A8 4.78 8.89
APQ-DM W8A8 4.24 9.07

TFMQ-DM W8A8 4.24 9.07
TAC-Diffusion W8A8 3.68 9.49

Ours W8A8 4.09 9.08
PTQ4DM W4A8 10.12 9.31

Q-Diffusion W4A8 4.93 9.12
TFMQ-DM W4A8 4.78 9.13

TAC-Diffusion W4A8 4.89 9.15
Ours W4A8 4.59 9.17

PTQ4DM* W6A6 61.83 7.10
Q-Diffusion* W6A6 26.06 9.02
TFMQ-DM* W6A6 9.59 8.84

Ours W6A6 4.40 9.04
PTQ4DM* W4A4 375.12 0.45

Q-Diffusion* W4A4 384.21 0.71
TFMQ-DM* W4A4 236.63 3.19

Ours W4A4 6.38 8.70

Table 1: Comparison results on CIFAR-10 based on DDIM
model with 100 timesteps. * means directly rerunning the
open-resource code.

because the model is quantized in a single forward pass dur-
ing the reconstruction phase, while it is subsequently in-
voked iteratively during the inference phase.

For diffusion models sharing weights across all timesteps,
quantizing blocks in the same order as the denoising pro-
cess is challenging. As an alternative method, we propose
progressively aligned reconstruction to iteratively align the
inputs. In particular, after the basic reconstruction with
BRECQ (Li et al. 2021), we continuously sample a new
calibration set using the quantized model and then utilize
this aligned set to reconstruct the model. This phase will re-
peated in multiple rounds with fewer iterations than the first
one. We refer to the Supplementary Material for the detailed
algorithm of the proposed PAR method.

Experimental Results and Analysis
Experimental Settings
By following existing works (Li et al. 2023b; Huang et al.
2024b), we evaluate our proposed method on the Ima-
geNet dataset (Deng et al. 2009) by using LDM-4 for the
conditional generation task. For the unconditional genera-
tion task, we conduct experiments on the CIFAR-10 dataset
(Krizhevsky, Hinton et al. 2009) by using DDIM (Song,
Meng, and Ermon 2021), LSUN-Bedrooms and LSUN-
Churches dataset (Yu et al. 2015) based on LDM-4. Similar
to (Li et al. 2023b; Huang et al. 2024b), we adopt the eval-
uation metrics including Fréchet Inception Distance (FID)
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Figure 3: Visualization of images generated by quantized
models via various PTQ methods, indicating that our method
generates images with better visual details in W6A6, and
outputs available images in the challenging W4A4 setting.

(Heusel et al. 2017) and Inception Score (IS) (Salimans et al.
2016) on CIFAR-10 and ImageNet, and additionally report
sliced FID (sFID) (Salimans et al. 2016) when using LDM.
FID and sFID are based on measuring the similarity be-
tween generated and real images by calculating the mean
and covariance of features extracted by the Inception net-
work, while IS assesses the quality and diversity of the gen-
erated images based on the predicted distribution from the
classification model like Inception.

Implementation Details
By following (Li et al. 2023b; Huang et al. 2024b), we per-
form the channel-wise quantization on weights and layer-
wise quantization on activations. Similar to (Huang et al.
2024b), we maintain the input and output layers of the model
in full precision and generate calibration sets by the full-
precision model. For the weight quantization, we conduct
BRECQ with 20,000 iterations for initialization, and 10,000
iterations for each progressive round with a batch size of
16. For the activation quantization, we use the commonly
used hyper-parameter search method as depicted in RepQ-
ViT (Li et al. 2023c) with a batch size of 64. All experiments
are conducted with an 8-bit post-Softmax layer unless be-
ing specifically claimed. We set Rtru to 3 when performing
TCR on W4A8 bit-width, while not implementing trunca-
tion operation on remaining experiments. All experiments
are conducted on a single RTX4090 GPU.

Comparison to the State-of-the-Art Methods
We compare our method to the state-of-the-art PTQ ap-
proaches, including PTQ4DM (Shang et al. 2023), Q-
Diffusion (Li et al. 2023b), PTQD (He et al. 2024), APQ-
DM (Wang et al. 2024a), TFMQ-DM (Huang et al. 2024b)
and TAC-Diffusion (Yao et al. 2024).

Unconditional Image Generation. On CIFAR-10 with
DDIM, we follow the same setting as Q-Diffusion (Li et al.
2023b). As shown in Table 1 and Fig. 3, our method reaches
competitive FIDs compared to the full-precision model, and
outperforms the state-of-the-art approaches in most cases.
As for W4A4, the performance of existing approaches is
collapsed with large FIDs. In contrast, our method achieves

Method Bit-width FID (↓) sFID (↓)
FP model W32A32 S32 2.98 7.09

Q-Diffusion W4A32 S8 4.20 7.66
PTQD W4A32 S8 4.42 7.88

TFMQ-DM W4A32 S32 3.60 7.61
Ours W4A32 S8 3.55 7.54

Q-Diffusion W8A8 S8 4.51 8.17
PTQD W8A8 S8 3.75 9.89

TFMQ-DM W8A8 S32 3.14 7.26
Ours W8A8 S8 3.21 7.59
Ours W8A8 S32 3.11 7.34

Q-Diffusion W4A8 S8 6.40 17.93
PTQD W4A8 S8 5.94 15.16

TFMQ-DM W4A8 S32 3.68 7.65
TAC-Diffusion W4A8 S8 4.94 -

Ours W4A8 S8 3.70 7.69
Ours W4A8 S32 3.65 7.67

Q-Diffusion* W4A4 S8 334.83 190.89
PTQD* W4A4 S8 321.47 181.61

TFMQ-DM* W4A4 S32 118.70 80.85
Ours W4A4 S8 16.43 23.85

Table 2: Comparison results on LSUN-bedrooms with
LDM-4 using the DDIM sampler with 200 timesteps.

promising results with less than 2.3 increase in FID, com-
pared to the full-precision model. We provide more visual-
ization results in the Supplementary Material.

On LSUN-bedrooms with Latent Diffusion Model
(LDM), we adopt the same settings as TFMQ-DM (Huang
et al. 2024b), except for the post-Softmax quantization bit-
width. As shown in Table 2, our method with 8-bit post-
Softmax significantly promotes the FID, compared to the
other methods using the same setting. And when using 32
bits, our method is comparable to TFMQ-DM in most cases,
and remarkably outperforms it under the W4A4 setting.

Conditional Image Generation. On ImageNet, we em-
ploy a denoising process with 20 iterations, following the
same setting as TFMQ-DM. As shown in Table 4, our
method improves FIDs of TFMQ-DM by 0.21 and 1.32 un-
der W8A8 and W4A32, respectively. As for the challeng-
ing W4A4 settings, despite that there is a gap between the
full-precision model and the quantized model, our method
still reaches a comparable performance, while the compared
methods performs poorly with extremely large FIDs and
sFIDs.

Ablation Study
To evaluate the effectiveness of each proposed component,
we perform ablation study on CIFAR-10 based on DDIM,
by employing BRECQ as the baseline method. The effec-
tiveness of different modules show as below.

Effectiveness of TCR As summarized in Table 5, the pro-
posed TCR module reduces the FID by 0.66 and 22.01 in the
W8A8 setting and the W6A6 setting respectively, compared
to the baseline. Moreover, this module plays a crucial role
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Method Bit-width FID (↓) sFID (↓)
FP model W32A32 4.08 10.89

Q-Diffusion W4A32 4.55 11.90
PTQD W4A32 4.67 13.68

TFMQ-DM W4A32 4.07 11.41
Ours W4A32 4.00 11.72

Q-Diffusion W8A8 4.87 12.23
PTQD W8A8 4.89 12.23

TFMQ-DM W8A8 4.01 10.98
Ours W8A8 4.05 10.82

Q-Diffusion W4A8 4.66 13.97
PTQD W4A8 5.10 13.23

TFMQ-DM W4A8 4.14 11.46
Ours W4A8 4.13 11.57

Q-Diffusion* W4A4 360.32 191.75
PTQD* W4A4 358.34 180.26

TFMQ-DM* W4A4 236.52 186.44
Ours W4A4 29.17 35.89

Table 3: Comparison results on LSUN-Churches based on
LDM-4 by the DDIM sampler with 500 timesteps.

Method Bit-width FID (↓) IS (↑) sFID (↓)
FP model W32A32 10.91 235.64 7.67

Q-Diffusion W4A32 11.87 213.56 8.76
PTQD W4A32 11.65 210.78 9.06

TFMQ-DM W4A32 10.50 223.81 7.98
Ours W4A32 10.50 234.51 6.66

Q-Diffusion W8A8 12.80 187.65 9.87
PTQD W8A8 11.94 153.92 8.03

TFMQ-DM W8A8 10.79 198.86 7.65
Ours W8A8 10.58 239.41 7.54

Q-Diffusion W4A8 10.68 212.51 14.85
PTQD W4A8 10.40 214.73 12.63

TFMQ-DM W4A8 10.29 221.82 7.35
Ours W4A8 9.97 232.87 7.67

Q-Diffusion* W4A4 376.54 1.69 165.39
PTQD* W4A4 361.29 1.87 190.48

TFMQ-DM* W4A4 210.06 2.95 192.81
Ours W4A4 30.69 86.11 18.92

Table 4: Comparison results on ImageNet based on LDM-4
by using the DDIM sampler with 20 timesteps.

in maintaining a comparable performance in low-bit quan-
tization such as W4A4, with a substantial improvement of
FID.

Effectiveness of DAQ In terms of the DAQ module, it fur-
ther promotes the performance across all bit-widths, espe-
cially improving the FID by 0.17 and 0.45 in the W4A8 and
W4A4 settings, respectively. Moreover, as displayed in Ta-
ble 6, DAQ achieves stable improvements across all Softmax
bit-widths, compared with the uniform and log2 quantizers.

Effectiveness of PAR As shown in Table 5, the proposed
PAR module also obtains improvements, reducing the FID
significantly by 2.71 in the W4A4 setting and promoting the
performance in other bit-widths.

More experimental results about hyper-parameters are

Method Bit-width FID (↓) IS (↑)
Baseline W8A8 4.78 8.87
+TCR W8A8 4.12 9.04

+TCR+DAQ W8A8 4.11 9.06
+TCR+DAQ+PAR W8A8 4.09 9.08

Baseline W4A8 4.93 9.12
+TCR W4A8 4.76 9.02

+TCR+DAQ W4A8 4.59 8.97
+TCR+DAQ+PAR W4A8 4.59 9.17

Baseline W6A6 26.60 9.02
+TCR W6A6 4.59 8.99

+TCR+DAQ W6A6 4.47 9.09
+TCR+DAQ+PAR W6A6 4.40 9.04

Baseline W4A4 371.61 0.41
+TCR W4A4 9.54 8.57

+TCR+DAQ W4A4 9.09 8.37
+TCR+DAQ+PAR W4A4 6.38 8.70

Table 5: Ablation results of the proposed main components
on CIFAR-10 based on DDIM with 100 timesteps.

Method Bit-width FID (↓) IS (↑)
Log2 quantizer W6A6 S8 4.97 8.95

Uniform quantizer W6A6 S8 4.66 9.08
DAQ (Ours) W6A6 S8 4.42 9.04

Log2 quantizer W6A6 S6 4.77 8.63
Uniform quantizer W6A6 S6 4.87 8.53

DAQ (Ours) W6A6 S6 4.61 9.05
Log2 quantizer W6A6 S4 4.76 9.01

uniform quantizer W6A6 S4 14.20 8.06
DAQ (Ours) W6A6 S4 4.66 9.07

Table 6: Ablation results on distinct quantizers under differ-
ent post-Softmax bit-widths on CIFAR-10 based on DDIM
with 100 timesteps.

provided in the Supplementary Material.

Conclusion
In this work, we propose a novel post-training quantiza-
tion method, dubbed Timestep-Channel Adaptive Quantiza-
tion for Diffusion Models (TCAQ-DM). We first develop the
timestep-channel joint reparameterization (TCR) to mitigate
the fluctuated activation ranges. Subsequently, we employ a
dynamically adaptive quantizer (DAQ) to reduce the quanti-
zation errors caused by the timestep-varying activation dis-
tributions. Moreover, we design a progressively aligned re-
construction (PAR) strategy to align the data in the recon-
struction stage of the quantization process with that during
inference, further boosting the performance. Extensive ex-
perimental results on distinct dataset and diffusion models
as well as extensive ablation results clearly demonstrate the
superiority of the proposed approach under low bit-widths.
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