
FPGA-based Approximate Multiplier for FP8
Ruiqi Chen1, Yangxintong Lyu1, Han Bao1, Jiayu Liu2, Yanxiang Zhu3, Shidi Tang4, Ming Ling4, *, Bruno da Silva1

1ETRO, Vrije Universiteit Brussel, 2University College London, 3VeriMake Innovation Lab, 4Southeast University
∗Corresponding author: ruiqi.chen@vub.be, trio@seu.edu.cn, bruno.da.silva@vub.be

Abstract—The 8-bit floating-point (FP8) data format has been
increasingly adopted in neural network (NN) computations due
to its superior dynamic range compared to traditional INT8.
However, FP8-based multiplication, a core operation in NNs, still
incurs significant power consumption. To address this issue, this
paper presents an FPGA-based approximate multiplier design for
FP8. Firstly, we conduct a bit-level analysis of the approximation
method. Based on this analysis, we implement a fine-grained
optimized design on mainstream FPGAs (AMD and Altera)
using primitives and templates combined with physical layout
constraints. Then, the accuracy and resource utilization of the
FP8 approximate multiplier are evaluated and analyzed. The
results indicate that, compared to previous FPGA-based 8-bit
designs, our design achieves the minimal LUT consumption.
Finally, we integrate the design into the inference phase of
a representative NN model, demonstrating its excellent power
efficiency. To the best of our knowledge, this is the first FPGA-
based FP8 approximate multiplier design, which can serve as a
benchmark for future designs and comparisons of FPGA-based
low-precision floating-point approximate multipliers. The code of
this work is available in our GitLab.

Index Terms—FPGA, FP8, multiplier, L-mul, Approximate
computing

I. INTRODUCTION

In recent years, the rapid development of neural networks
has brought the issue of high energy consumption to the
forefront [1]. An effective approach to address this challenge
is the use of quantization techniques, which improves memory
access and computational efficiency [2], [3]. Among these, 8-
bit floating-point (FP8) numbers offer better dynamic range
and computational precision compared with traditional 8-bit
integer (INT8), making them widely adopted in neural network
computations [4], [5]. To enhance the computational efficiency
of FP8, specialized hardware modules for FP8 acceleration
have become a new trend. For instance, designing application-
specific integrated circuits (ASICs) [6], [7] and integrating
corresponding units into GPUs [8].

Nonetheless, this still cannot eliminate the multiplication
operations in DNNs. As a fundamental computation in DNNs,
various approximate multipliers have been proposed to im-
prove efficiency and reduce energy consumption. These mul-
tipliers are designed to reduce latency, energy consumption,
and area. Chen et al. [9] proposed an optimally multi-level
architecture that seamlessly integrates runtime configurability
with parallel module execution. An optimization strategy was
applied to improve area efficiency, achieving a linear relation-
ship with accuracy rather than the quadratic or exponential
relationships seen in previous works. Ansari et al. [10] devel-
oped an 8x8 approximate multiplier tailored for NN designs by

improving the design of logarithmic multipliers. HEAM [11]
achieves automated design of approximate multipliers by min-
imizing the average error based on operand distribution and
integrates these multipliers into DNN accelerators.

However, the aforementioned approximation methods are
primarily aimed at reducing power consumption and area
utilization in ASIC implementations and may perform sub-
optimally on FPGAs. This is because FPGA reconfigurable
logic is typically based on fixed-size lookup tables (LUTs).
While FPGAs also integrate DSP hardware multiplier units,
these units are physically fixed and limited in quantity. There-
fore, improving the efficiency of LUT-based multiplication in
terms of speed, power consumption, and resource utilization
becomes particularly critical. Ullah et al. [12]–[14] proposed
a series of FPGA-based approximate multipliers covering
data bit-widths from 4-bit to 32-bit. More recently, their
AxO series [15], [16] integrated the design of approximate
multipliers into SNN accelerators. DyRecMul [17] introduced
a dynamically reconfigurable INT8 approximate multiplier
design, which includes a floating-point conversion unit. This
design enables efficient floating-point conversion, reducing
preprocessing operations and enhancing computational effi-
ciency. Leon et al. [18] proposed a DSP-based approximate
multiplier design for floating-point computations, which was
integrated into a CNN accelerator. This approach achieved
more efficient computation within the accelerator framework.

Although previous works have made efforts in FPGA-
based approximate multiplier designs, there is still a lack of
specialized approximate multipliers targeting the FP8 format.
Therefore, this paper proposes an FPGA-based approximate
multiplier for FP8. Our main contributions include:

• We introduce an approximate method for FP8 multiplica-
tion and analyze its principles at the bit-level. Based on
this analysis, we implement the design on two mainstream
FPGA platforms (AMD and Altera). Using primitives
and templates combined with physical layout constraints,
we achieve fine-grained optimization to minimize re-
source usage and power consumption. To the best of our
knowledge, this is the first FPGA-based FP8 approximate
multiplier design.

• We make a comparison to the previous FPGA-based INT8
approximate multiplier designs, the result shows that our
approach reduces resource consumption by an average of
10% while maintaining comparable performance. Addi-
tionally, we integrate our design into a CNN accelerator,
and experiments demonstrate that, among 8-bit designs,
ours achieves the lowest power consumption.

https://gitlab.com/etrovub/embedded-systems/publications/FPGA-based-approximate-multiplier-for-FP8

M
U

X

M
U

X

M
U

X

M
U

X

Cout

S0 S1 S2 S3

Cin

O6 O6 O6 O6O5/AX O5/BX O5/CX O5/DX

LUT 6_2

LUT 5

LUT 5

I4

I3

I2

I1

I0

I4

I3

I2

I1

I0

I4

I3

I2

I1

I0

I5

O6

O5

 SLICE

LUT

LUT

LUT

LUT

M
U

X
…

M
U

X

C
arry

 C
h
ain

FF

FF

FF

FF

FF

FF

FF

FF

(a)

(b) (c)

 CLB

SLICE

SLICE

(d)

 ALM

Adaptive

LUT

1

2

3

4

5

6

7

8

Full

Adder

Full

Adder

RegReg

RegReg

RegReg

RegReg

4 Regosters per ALM

 ALM

Adaptive

LUT

1

2

3

4

5

6

7

8

Full

Adder

Full

Adder

Reg

Reg

Reg

Reg

4 Regosters per ALM

A
M

D
 (

X
il

in
x
)

U
lt

r
a
S

c
a
le

/
U

lt
r
a
S

c
a
le

+

A
ltera

 (In
tel) A

rria
 1

0
/ S

tra
tix

 1
0

/ A
g
ilex

(e)

 Extended LUT Mode

datad0

datac0

dataa

datab

datac1

datae

datad1

dataf

Adaptive

LUT

(f)

RegReg

labclk

To

General

Routing

 Arithmetic
Mode

 Normal Mode

X-input

LUT

Y-input

LUT

datad0

datac0

dataa

datab

datac1

datae

datad1

dataf

combout0

combout1

datad0
datac0
dataa
datab

datac1
datad1

4-input

LUT

4-input

LUT

4-input

LUT

4-input

LUT

4-input

LUT

4-input

LUT

4-input

LUT

4-input

LUT

Carry_in

Carry_out

RegReg

RegReg

labclk

To

General

Routing

(g)

Fig. 1. The state-of-the-art FPGA basic structure from AMD (Xilinx) and Altera (Intel). (a) Typical AMD FPGA configurable logic block (CLB) structure [19].
(b) LUT6 structure. (c) Carry chain structure. (d) Typical Altera FPGA adaptive logic module (ALM) structure [20]. (e) The ALM runs in normal mode. (f)
The ALM runs in extended LUT mode. (g) The ALM runs in arithmetic mode.

TABLE I
COMPARISON OF INT8 AND FP8 (E4M3)

Data Type INT8 FP8 (E4M3)
Bit Width 8 bits 8 bits

Minimum Value -128 -448
Maximum Value 127 448

Decimal Precision Fixed (1) Dynamic

The paper is organized as follows: Section II provides
the description of the FP8 formats and the introduction of
FPGA structure. Section III introduces our efficient hardware
implementation of FP8 approximate multiplier. Experimental
results and discussion are given in Section IV. Conclusions
are drawn in Section V.

II. PRELIMINARIES

A. FP8 Formats

FP8 is a natural progression from the FP16 representations,
effectively reducing memory consumption and improving
memory access and computational efficiency [5]. Compared
to traditional INT8, FP8 offers a larger dynamic range (the
commonly used E4M3 format, as shown in Table I and
Fig. 2). Moreover, FP8 achieves less accuracy loss during
NN inference [21]. The FP8 format adheres to IEEE-754
conventions, where a real numbers is encoded by using a 1-bit
sign S, an e-bit integer exponent E and an m-bit fractional
(mantissa M),

xDEC = (−1)S × 2E ×M, (1)

where E = e − bias and M = 1 + m. The bias in this
context varies with the number of bits in the exponent and is
determined by the following formula:

bias = 2e−1 − 1. (2)

0 1 0 0 1 1 1 10 1 0 0 1 1 1 1

Mantissa

(fraction)

3-bit

Exponent

4-bit

Sign

1-bit

0 0 0 0 0 1 1 10 0 0 0 0 1 1 1

Sign

1-bit

Digits

7-bit

INT8 FP8

Values BIN: {00000111} DEC: 7 BIN: {01001111} DEC: 7.5Values

MSB LSB LSBMSB

Fig. 2. The demonstration of the INT8 and FP8 (E4M3) defined in IEEE
754. MSB stands for most significant bit and LSB stands for least significant
bit.

Note that an implict 1, namely the hiddenbit, is concatenated
to the fraction as an integer bit and forms the significand. A
FP number with E = 0 has no implicit 1 in the significand,
so zero and subnormal values can be represented. In addition,
exponent E=2e−1−1 is reserved for the representation of ±∞
and NaNs.

B. FPGA Structure

State-of-the-art FPGAs from AMD-Xilinx and Intel-Altera
utilize basic logic cells such as multi-input LUTs, carry chains
(adders), multiplexers, and D flip-flops to implement both
combinational and sequential logic circuits. The method pro-
posed in this paper is general, relying on LUTs, adders (carry
chains), multiplexers, and D flip-flops. However, there are
subtle differences depending on the characteristics of different
devices. Therefore, we present two types of mainstream FPGA
devices for illustration, as shown in Fig. 1.

A slice in the configurable logic block (CLB) of AMD’s
Virtex-7 and UltraScale/UltraScale+ FPGAs contains four
6-input LUTs (commonly referred to as LUT6 2), two
4-bit carry chains (a 8-bit carry chain within Ultra-
Scale/UltraScale+) and eight flip-flops and multiplexers, as
shown in Fig. 1(a). A LUT6 2 can be used to implement
either a single 6-bit combinational function using the O6

fp8_x[7]

fp8_y[7]

LUT_A

O6fp8_x[7]

fp8_y[7]

LUT_A

O6

add1

add2

CI

zero

Pe[n]

LUT_C

O6

zero

Pe[n]

LUT_C

O6

zero

Pe[n]

LUT_C

O6

CARRY8CARRY8

CARRY8CARRY8

CARRY8CARRY8

CARRY8CARRY8

LUT_BLUT_B

CC

... LUT_BLUT_B

CC

LUT_BLUT_B

CC

fp8_x[6] fp8_y[6]

fp8_x[m+1] fp8_y[m+1]

fp8_x[m] fp8_y[m]

CO[e-1] ...

LUT_BLUT_B

CC

... LUT_BLUT_B

CC

LUT_BLUT_B

CC
CI

bias*[e-1]

O[e-1]
bias*[1]

O[1]
bias*[0]

O[0]

...

LUT_BLUT_B

CC

bias*[e]

...e e-1 1 0

...e-1 1 0

LUT_BLUT_B

CC

... LUT_BLUT_B

CC

LUT_BLUT_B

CC

fp8_x[m-1] fp8_y[m-1]

fp8_x[1] fp8_y[1]

fp8_x[0] fp8_y[0]

CO[m-1] ...

LUT_BLUT_B

CC

... LUT_BLUT_B

CC

LUT_BLUT_B

CC

2lm[m-1]
O[m-1]

2lm[1]
O[1]

2lm[0]
O[0]

CO[m]
...

LUT_BLUT_B

CC

2lm[m]

...mm+1 m-1 1 0

...m-1 1 0sign

Exponent-Adder Mantissa-Adder

CI CI

CI

e

fp8_x[7] fp8_y[7]

LUT_ALUT_A

zero

LUT_CLUT_C

zero

LUT_CLUT_C ...

zero

LUT_CLUT_C

zero

LUT_CLUT_C LUT_DLUT_D ... LUT_ELUT_E LUT_ELUT_E

*if(fp8_x[6:0] or fp8_y[6:0]

== 7'b0)：zero = 1'b1

zero zero zero

CARRY8

CARRY8

CARRY8

CARRY8

LUT_B

CC

... LUT_B

CC

LUT_B

CC

fp8_x[6] fp8_y[6]

fp8_x[m+1] fp8_y[m+1]

fp8_x[m] fp8_y[m]

CO[e-1] ...

LUT_B

CC

... LUT_B

CC

LUT_B

CC
CI

bias*[e-1]

O[e-1]
bias*[1]

O[1]
bias*[0]

O[0]

...

LUT_B

CC

bias*[e]

...e e-1 1 0

...e-1 1 0

LUT_B

CC

... LUT_B

CC

LUT_B

CC

fp8_x[m-1] fp8_y[m-1]

fp8_x[1] fp8_y[1]

fp8_x[0] fp8_y[0]

CO[m-1] ...

LUT_B

CC

... LUT_B

CC

LUT_B

CC

2lm[m-1]
O[m-1]

2lm[1]
O[1]

2lm[0]
O[0]

CO[m]
...

LUT_B

CC

2lm[m]

...mm+1 m-1 1 0

...m-1 1 0sign

Exponent-Adder Mantissa-Adder

CI CI

CI

e

fp8_x[7] fp8_y[7]

LUT_A

zero

LUT_C

zero

LUT_C ...

zero

LUT_C

zero

LUT_C LUT_D ... LUT_E LUT_E

*if(fp8_x[6:0] or fp8_y[6:0]

== 7'b0)：zero = 1'b1

zero zero zero
Post-Processing

LUT_B

O6

O5
LUT_B

O6

O5

Pm[m+1]

Pm[m]

LUT_D

O6Pm[k]

zero

Pm[m+1]

Pm[m]

LUT_D

O6Pm[k]

zero

Pm[m+1]

Pm[m]

LUT_E

O6
Pm[k+1]

Pm[k]

zero

Pm[m+1]

Pm[m]

LUT_E

O6
Pm[k+1]

Pm[k]

zero

(a) (b)

Fig. 3. Hardware fine-grained architecture for FP8 approximate multipler. (a) LUT-based basic components. (b) AMD-FPGA-based fine-grained architecture
for FP8 approximate multipler.

output bit, or two 5-bit combinational functions using the
O5 and O6 output bits, as shown in Fig. 1(b). To do it, an
INT value is defined, which describes all the possible input
combinations for which a logic value ”1” is required at the
output. For example, an INT value of 0000000000000002
(hex) for LUT6 2 defines to produce outputs O5 = 1 and O6 =
0 for input combination 100001. Besides the implementation
of single 6-bit combinational functions, these LUT6 2 are also
used for controlling the associated carry chain, as shown in
Fig. 1(c). The carry chain implements a carry-lookahead adder
by using O5 as the carry-generate signal and O6 as the carry-
propagate signal. The carry-generate signals for the carry chain
can also be provided by the external bypass signals AX – DX.

The adaptive logic module (ALM) in Altera’s Stratix 10,
Arria 10, and Agilex series primarily includes an 8-input
fracturable LUT, two dedicated embedded adders, and four
dedicated registers, as shown in Fig. 1(d). Unlike AMD’s CLB,
Altera’s ALM supports three different modes: normal mode,
extended LUT mode, and arithmetic mode. In the normal
mode, the adaptive LUT is divided into two multi-input LUTs:
an X-input LUT and a Y-input LUT, as shown in Fig. 1(e).
The two LUTs are connected through logical interconnections,
allowing for different X:Y combinations. When the inputs are
independent, the LUTs can support configurations such as 4:4
or 5:3, or even less inputs. However, when X:Y is 5:4 or 5:5,
the inputs need to be shared between the two LUTs. In the
extended LUT mode, the ALM can support a maximum of an
8-input LUT, as shown in Fig. 1(f). The ALM in arithmetic
mode uses two sets of two 4-input LUTs along with two
dedicated full adders, as shown in Fig. 1(g). The dedicated
adders allow the LUTs to perform pre-adder logic. Therefore,
each adder can add the output of two 4-input functions.

III. THE PROPOSED APPROXIMATE MULTIPLIER FOR FP8

A. Approximate Multiplication for FP8

According to the Eq. (1), the FP8 multiplication process of
x and y can be represented as:

Mul(x, y) = Mx · 2Ex ×My · 2Ey

= (1 +mx) · 2Ex × (1 +my) · 2Ey

= (1 +mx +my +mx ·my) · 2Ex+Ey ,

(3)

we omit the sign bit as it can be handled through an XOR
operation. One can note that in Eq. (3), only mx ·my involves
a multiplication operation for hardware circuit design. The
remaining operations can be implemented by using addition
or other linear operations such as shift. To alleviate the
potential bottleneck caused by mantissa multiplication, Luo et
al. [22] propose the L-Mul algorithm, which can be designed
to approximate the FP8 multiplication process:

L-Mul(x, y) = (1 +mx +my + 2−l(m))× 2Ex+Ey ,

l(m) =

m if m ≤ 3,
3 if m = 4,
4 if m ≥ 4,

(4)

where m denotes the bit-width of the mantissa. By using this
piecewise function approximation, the original multiplication
operation can be transformed into shift and addition opera-
tions. We will introduce the corresponding fine-grained FPGA-
based hardware design in Section III-B.

B. Hardware Design

1) AMD-FPGA-Based Design: The combination of the
L-Mul algorithm (Eq. (4)) and the FP8 format conversion
relationships (Eq. (1) and Eq. (2)) provides the bit-level
representation of the L-Mul algorithm in binary operations:

TABLE II
THE REPRESENTATION OF THE MANTISSA FOR DIFFERENT CARRY

[m+1,m] Mantissa
2’b00 1.xm

2’b01 10.xm

2’b10 11.xm

2’b11 100.xm

TABLE III
THE bias∗ VALUES FOR DIFFERENT TYPES OF FP8 FORMATS

CORRESPOND TO SPECIFIC CONFIGURATIONS

FP8 Type [m+1,m] bias FP8 Type [m+1,m] bias

E6M1
2’b00 -31

E5M2
2’b00 -15

2’b11 -29 2’b11 -13
others -30 others -14

E4M3
2’b00 -7

E3M4
2’b00 -3

2’b11 -5 2’b11 -1
others -6 others -2

E2M5
2’b00 -1

E1M6
2’b00 0

2’b11 1 2’b11 2
others 0 others 1

L-MulBIN(x, y) =

(
1 +

x[m− 1 : 0] + y[m− 1 : 0]

2m
+ 2−l(m)

)
× 2x[6:m]+y[6:m]−biasx−biasy .

(5)

To achieve this, we design five LUT configurations com-
bined with carry chains to implement the FP8 approximate
multiplier, as shown in Fig. 3. The design primarily consists
of three parts: the Exponent-Adder, the Mantissa-Adder and
the Post-Processing unit.

The Exponent-Adder and Mantissa-Adder are implemented
using LUT B and CARRY8. The Exponent-Adder includes
an m-bit adder and an m+1-bit adder, while the Mantissa-
Adder includes an e-bit adder and an e+1-bit adder. LUT B
primarily functions as a half-adder. The output O5 corresponds
to the sum (S). When the LSB of carry-in (CI) is 0, the
operation is O5 = add1 ⊕ add2. Otherwise the operation is
O5 = add1⊕(∼ add2). The output (O6) corresponds to the C
in a half-adder. In other words, O6 = add1 · add2. CARRY8
is used to implement addition operations. Each CARRY8 unit
contains eight basic units (CC), and each CC can combine
with LUT B to function as a full adder. The CI represents
the carry input from the previous stage. When the CC unit
is the LSB, CI = 0 indicates addition and CI = 1 indicates
subtraction. The O corresponds to the sum (S) in the full
adder which can be calculated as: O = (add1⊕add2)⊕CI . In
summary, a total of N LUT B and CC units can be combined
to form an N-bit adder.

The Post-Processing Unit is primarily responsible for han-
dling the sign bit and managing the carry of the mantissa.
The LUT A is used to determine the sign bit of the product.
Specifically, it processes the bit of the inputs x[7] and y[7].
There might be a carry occur, requiring the carry value from
the mantissa to be added to the exponent. For the mantissa, we
follow the carry principles of typical FP multipliers, represent-
ing the mantissa in the form of 1.xm. The corresponding carry

Post-Processing

LUT_ALUT_A LUT_CLUT_C LUT_DLUT_D LUT_ELUT_E

Mantissa-Adder

… … … …

fp8_y[0]

fp8_x[0]

fp8_y[1]

fp8_x[1]

fp8_y[m-1]

fp8_x[m-1]

fp8_y[m-2]

fp8_x[m-2]

0

1

…

m

m+1

0

1

…

m

m+1

2
lm
[0]

2
lm
[1]

2
lm
[m]

2
lm
[m-1]

CI

Mantissa-Adder

… …

fp8_y[0]

fp8_x[0]

fp8_y[1]

fp8_x[1]

fp8_y[m-1]

fp8_x[m-1]

fp8_y[m-2]

fp8_x[m-2]

0

1

…

m

m+1

2
lm
[0]

2
lm
[1]

2
lm
[m]

2
lm
[m-1]

CI

Exponent-Adder

… … … …

fp8_y[m]

fp8_x[m]

fp8_y[m+1]

fp8_x[m+1]

fp8_y[6]

fp8_x[6]

fp8_y[5]

fp8_x[5]

0

1

…

e-1

e

0

1

…

e-1

e

bias*[0]

bias*[1]

bias*[e-1]

bias*[e]

Exponent-Adder

… …

fp8_y[m]

fp8_x[m]

fp8_y[m+1]

fp8_x[m+1]

fp8_y[6]

fp8_x[6]

fp8_y[5]

fp8_x[5]

0

1

…

e-1

e

bias*[0]

bias*[1]

bias*[e-1]

bias*[e]

CI
CI

CI

CI
CI

Fig. 4. Altera-FPGA-Based fine-grained architecture for FP8 approximate
multipler.

handling is shown in Table II. When the carry value is 2′b00,
the final product’s mantissa is Pm[m − 1 : 0], and no carry
is added to the exponent. When the carry value is 2′b01, the
mantissa is represented as 10.xm, requiring the decimal point
to shift left by one position, i.e. the exponent is incremented
by 1. In this case, the mantissa is Pm[m − 1 : 0]. Similarly,
when the carry value is 2′b10, the exponent is incremented
by 1, and the mantissa becomes 1′b1, Pm[m− 1 : 1]. For a
carry value of 2′b11, the exponent is incremented by 2, and
the mantissa is Pm[m−1 : 0]. Since the product of 0 and any
number is 0, the final product’s mantissa and exponent can be
expressed using the following formulas,

P ′
m[m− 1 : 0] =

0, zero = 1

{1′b1, Pm[m− 1 : 1]}, Pm[m+ 1 : m] = 2′b10

Pm[m− 1 : 0], others
(6)

P ′
e[e : 0] =

0, zero = 1

Pe, Pm[m+ 1 : m] == 2′b00

Pe + 2, Pm[m+ 1 : m] == 2′b11

Pe + 1, others.

(7)

To reduce the usage of adders, we combine the bias with
various carry scenarios from Table II and treat it as a constant,
bias∗. The corresponding values are shown in Table III for
the types of FP8 formats. LUT C, LUT D and LUT E
are used to implement Eq. (6) and (7), and the remaining
corresponding operations. These operations compute the final
product’s exponent bits, the highest mantissa bit, and the
remaining mantissa bits excluding the highest bit, respectively.

Fig. 5. The normalized number of unique error occurrences under different FP8 formats.

To enhance the performance of the FP8 approximate mul-
tiplier, we implemented the hardware design using LUTs and
carry chain primitives. Furthermore, to shorten the connection
paths between LUTs and carry chains, we applied strict
physical placement constraints. Specifically, as described in
Section II-B, each carry chain can connect directly to four
LUTs. Therefore, we constrained the physical placement at
the CLB level, ensuring that the LUTs are connected to the
carry chain within the same CLB. The input FFs are placed in
adjacent CLBs to guarantee the shortest possible data paths.

2) Altera-FPGA-Based Design: Similarly, the design based
on bit-level Eq. (5) is divided into three parts: the Exponent-
Adder, the Mantissa-Adder, and the Post-Processing unit,
as shown in Fig 4. As introduced in Section II-B, due to
the integration of full adders within the ALMs of Altera
FPGAs, the designs of Exponent-Adder and Mantissa-Adder
need to be modified, while the Post-Processing unit can be
directly reused. In other words, only the LUT B design
needs adjustment, while other LUT-based basic components
(as shown in Fig. 3(a)) can be directly applied to Altera
FPGAs. We configure the ALMs to operate in arithmetic
mode, where each ALM includes two full adders. Thus, the
combination of LUT B + CC from AMD FPGAs can be
directly replaced by the ALM implementation. Additionally,
since carry cascading is supported between ALMs, the cascade
can be achieved by enforcing physical placement constraints
on adjacent ALMs during layout. Under this configuration, one
ALM serves as an equivalent replacement for two LUT B and
CC combinations. Therefore, Exponent-Adder and Mantissa-
Adder consume e ALMs and m ALMs, respectively. The
differences in design between AMD and Altera for this im-
plementation will be analyzed in Section IV-C.

TABLE IV
ERROR METRICS AND CORRESPONDING FORMULAS

Metric Formula

Error Probability (EP) EP =
1

2N

2N−1∑
i=0

EDi ̸= 0

Mean Absolute Error (MAE) MAE =
1

2N

2N−1∑
i=0

EDi

Mean Relative Error (MRE) MRE =
1

2N

2N−1∑
i=0

EDi

Exacti

Mean Squared Error (MSE) MSE =
1

2N

2N−1∑
i=0

(EDi)
2

Normalized Error Distance (NED) NED =
1

2N

2N−1∑
i=0

EDi

max(ED)

IV. RESULTS AND DISCUSSION

A. Experimental setup

We first evaluate the error of L-Mul using five metrics: Error
Probability (EP), Mean Absolute Error (MAE), Mean Relative
Error (MRE), Mean Squared Error (MSE), and Normalized
Error Distance (NED). For unsigned arithmetic, these metrics
are defined in Table IV.

The FP8 approximate multiplier design is described in
Verilog and implemented using AMD Vivado 2022.2 and
Quartus Prime Pro 23.3 for logic synthesis and placement con-
straints. The design is deployed and validated on the ZCU104
Evaluation Kit of UltraScale+ FPGA and Apollo Agilex
SOM, respectively. We perform multiple synthesis iterations,
applying different critical path constraints in each iteration
to implement each design multiple times. This approach en-
sures accurate measurements of area and maximum operating
frequency. The Vivado simulator and power analysis tools

TABLE V
AMD FPGA AND ALTERA FPGA IMPLEMENTATION RESULTS FOR DIFFERENT FP8 FORMATS

Data type AMD UltraScale+ FPGA Altera Agilex FPGA
LUTs FFs CARRY Max Frq (MHz) ALM Logic Register Max Frq (MHz)

E6M1 22 25 4 606 27 25 655
E5M2 21 25 4 610 26 25 674
E4M3 22 25 4 617 27 25 694
E3M4 22 25 4 610 27 25 623
E2M5 22 25 4 568 24 25 519
E1M6 22 25 4 585 25 25 577

TABLE VI
ERROR EVALUATION ACROSS DIFFERENT FP8 FORMATS & COMPARISON

WITH RELATED WORK

Data type EP MAE MRE MSE NED
E6M1 1 2.1×1015 0.319 2×1033 0.001
E5M2 0.938 8.58×105 0.111 9.12×1013 0.002
E4M3 0.968 141 0.068 7.56×105 0.005
E3M4 0.992 3.04 0.069 90.7 0.019
E2M5 0.997 0.991 0.072 3.23 0.076
E1M6 0.999 0.765 0.073 1.18 0.218

DyRecMul [17] 0.5157 397 0.0680 96336 0.00005

are used to calculate power consumption. As this is the first
FPGA-based FP8 approximate multiplier design, we ensure
fairness by selecting previous FPGA-based INT8 approximate
multipliers for comparisons of resource consumption, power
consumption, and critical path delay. Finally, we deploy the
FP8 approximate multiplier on a typical DNN accelerator to
validate its superiority in terms of energy efficiency.

B. Error Evaluation

Table VI presents the error metrics of L-Mul in different
formats of FP8. For the commonly used E4M3 format, L-
Mul demonstrates better performance in terms of MAE and
MRE compared to DyRecMul [17], which is the latest INT8
approximate design. This is an acceptable outcome given the
better data range of the FP8 format. Moreover, it is important
to note that when the exponent is allocated a larger bit-
width, the range of representable numbers increases, which
can lead to significantly larger MAE and MSE values due to
the greater magnitude of errors. Moreover, to provide a more
intuitive representation of the normalized number of unique
error occurrences for the proposed multipliers, we visualize
the data in Fig 5.

C. Hardware Implementation and Evaluation

The resource consumption and latency for different FP8
formats implemented on AMD FPGAs and Altera FPGAs
are shown in Table V. For AMD UltraScale+ FPGA, by
leveraging fine-grained primitive designs and physical place-
ment and routing constraints, all components are mapped to
the resources within six adjacent CLBs, as shown in Fig. 6.
Meanwhile, the carry chain consumption aligns with the design
intent, requiring four carry chains. It can be observed that our
design consumes fewer than 22 LUTs on average. In the case
of Altera Agilex FPGA, we utilize templates and logic region

Post-processing unitMantissa-AdderExponent-Adder

Fig. 6. The layout of our design on the AMD UltraScale+ FPGA.

constraints to compensate for the absence of fine-grained
primitives. All components are mapped to the resources within
three adjacent logic array blocks, as shown in Fig. 7(b). Using
the resource property viewer tool, we confirm that the ALMs
function in arithmetic mode and achieve carry cascading, as
intended in Section III-B2 and shown in Fig. 7(c).

To further highlight the advantages of our design in terms
of resource utilization and power consumption, we compare it
with previous FPGA-based approximate multipliers and AMD-
Xilinx’s IP core. It should be noted that previous work has
primarily been based on AMD (Xilinx) FPGAs, and there are
certain differences in resource calculation between AMD and
Altera FPGAs. Therefore, in this comparison, we only present
the results for AMD FPGAs. We use the deployment results
under the E4M3 format, which is the most commonly used
FP8 format. Although the multiplication rules for FP8 and
INT8 differ, we consider this comparison valuable due to their
identical data bit-width. Table VII presents the comparison
results, these values are reported or estimated from original
reports. It should be noted that the data in the table VII is

Post-processing unitMantissa-AdderExponent-Adder

(b)(a)

Fig. 7. (a) The layout of our design on the Altera Agilex FPGA. (b) The demonstration of ALM runs in arithmetic mode.

TABLE VII
RESOURCE AND PERFORMANCE COMPARISON OF 8-BIT APPROXIMATE MULTIPLIERS BASED ON REPORTED DATA IN PRIOR WORK

Designs Year Device Family LUTs FFs CARRY DSPs Max Frq (MHz) Delay (ns) Power (mW)
AMD-Xilinx1

(Exact) 2015 UltraScale+ (16nm) 69 16 14 0 730 3.54 2.32

Ullah [23]
(INT8 Unsigned) 2018 Virtex-7 (28nm) 56 0 4 0 / 6.95 1.68

Van Toan [24]
(INT8 Unsigned) 2020 Spartan-6 (45nm) 59 / 4 0 / 4.65 0.4322

Ullah [13]
(INT8 Unsigned) 2020 Virtex-7 (28nm) 37 35 4 0 / 3.41 1.653

Ullah [14]
(INT8 Signed) 2021 Virtex-7 (28nm) 54 32 9 0 / 4.37 1.66

DyRecMul [17]
(FP8 to INT8 Signed) 2024 UltraScale+ (16nm) 35 / 0 0 699 5.72 1.203

Ours
(FP8 E4M3) 2025 UltraScale+ (16nm) 22 25 4 0 617 4.85 1.344

1 The IP version is Multiplier v12.0 and values reported at 200 MHz
2 Values reported from the original report (operating at 1.2V and 100 MHz)
3 Values estimated from the reported PDP in the original report
4 Values reported at 200MHz

sourced from the original reports of each respective paper.
As a result, the comparisons involve different devices and
operating frequencies. For each item, it can be observed that
our design exhibits the lowest resource consumption. Addi-
tionally, compared to the FP8-compatible DyRecMul [17], our
design achieves a lower delay. Benefiting from the simplicity
of unsigned INT8 operations, our design achieves the fastest
frequency compared with [24]. It is important to note that
references [23], [13], and [14] are implemented on AMD-
Xilinx 7-series FPGAs, which introduces some power con-
sumption differences. Additionally, the power data reported
in [24] is recorded at 1.2 V supply and 100 MHz frequency,
which is significantly lower than the results from other design.
To better demonstrate the power-efficiency advantages of our
design, we performed a Pareto analysis to visually illustrate
the differences between our design and others, as shown in
Fig. 8. The result shows that our design lies on the Pareto
frontier. Additionally, due to its outstanding power-efficiency,
our design achieves the second smallest Power-Delay Product
(PDP) among the compared implementations.

Fig. 8. The Pareto analysis under area and delay. The data under the design
point represents the Power-Delay Product (PDP).

D. Case Study: DNN Accelerator Integration

To further validate the performance and power efficiency
of our design, we integrate it into a CNN accelerator. The
CNN model is built using PyTorch and quantized using a post-

TABLE VIII
EVALUATION OF ACCURACY LOSS FOR DIFFERENT DATA FORMATS

ACROSS VARIOUS DATASETS

Datasets MNIST CIFAR-10 ImageNetV2

Exact
FP32 0 0 0

FP8 (E4M3) -0.04% -0.36% -0.18%
INT8 -0.1% -1.69% -0.35%

Approx

Ullah [23]
(INT8 Unsigned) -1.81% -3.1% -1.52%

Ullah [13]
(INT8 Unsigned) -0.88% -2.83% -5.01%

Ullah [14]
(INT8 Signed) -1.33% -1.56% -0.49%

DyRecMul [17]
(INT8 Unsigned) -1.66% -7.25% -0.21%

L-Mul (E4M3) -0.96% -1.56% -0.83%

training quantization (PTQ) strategy [25]. The model consists
of 13 convolutional layers, 1 Region Proposal Network, 1
RoI Pooling layer, and 2 fully connected layers. We evaluate
the inference accuracy on three representative CNN datasets
(MNIST, CIFAR-10, and ImageNetV2). Table VIII shows the
average accuracy loss for the corresponding models under
different data formats. FP8, with its superior dynamic range,
incurs less accuracy loss compared with INT8. For the com-
parison of 8-bit approximation methods, L-Mul demonstrates
the best robustness. Specifically, across three datasets, L-Mul
achieves the lowest average accuracy drop (-1.12%) and the
smallest standard deviation (0.39) among all methods.

To demonstrate the high energy efficiency of our approxi-
mate multiplier in hardware deployment, we integrate it into
a CNN accelerator to replace the original DSP blocks, and
evaluate the corresponding resource usage and power con-
sumption. For comparison, prior works are also integrated and
deployed using the same methodology. Considering that most
baseline designs are developed on the Virtex-7 platform, we
adopt the VC709 Connectivity Kit as the target platform. This
choice does not affect our implementation, as introduced in
Section II-B, the Virtex-7 and UltraScale+ devices feature the
same CLB architecture. The synthesis and implementation are
conducted using AMD Vivado 2022.2. As shown in Table IX,
both resource utilization and power consumption are obtained
from the post-implementation reports generated by Vivado.
Power consumption is obtained as the sum of GTH, hard
IP, and dynamic components. Among them, GTH and hard
IP are used for PCIe communication, and this portion of the
power overhead is identical across all accelerators. We design
CNN inference accelerators based on INT8 exact multiplier
and 8-bit approximate multiplier using the quantization pa-
rameters shown in Table VIII, with Faster R-CNN as the
backbone network. The data shows that all 8-bit approximate
multipliers enable DSP-free designs; however, only our design
and DyRecMul are able to maintain the original operating
frequency of 200 MHz. Among all 8-bit approximate designs,
our approach consumes the lowest LUTs and FFs, leading
to reduced power consumption. Specifically, compared to the
original INT8 design, our method achieves a 4.02% reduction

TABLE IX
HARDWARE DEPLOYMENT RESULTS FOR NEURAL NETWORK INFERENCE

USING DIFFERENT MULTIPLIERS, OBTAINED THROUGH OUR OWN
EXPERIMENTS ON A UNIFIED PLATFORM

Multiplier LUT FF DSP Power Frq
INT8 (Exact) 117,067 95,317 1,156 9.46 200

Ullah [23] 188,324 136,434 0 10.33 173
Ullah [13] 166,534 152,056 0 9.56 192
Ullah [14] 186,602 157,106 0 10.21 187

DyRecMul [17] 250,960 169,079 0 12.69 200
Ours 143,702 122,020 0 9.08 200

Ours (default1) 163,540 152,157 0 9.54 189
1 The design is directly deployed by Vivado without any primitives

and physical placement constraints.

in power, and compared to the state-of-the-art DyRecMul,
power is reduced by 28.45%. In addition, the table includes
a default accelerator implementation as part of the ablation
study. This design is directly derived from Eq. (5) for RTL
implementation, without applying any primitives-based fine-
grained optimizations or physical placement constraints. The
results show that under the default strategy, the default imple-
mentation incurs higher resource usage and exhibits inferior
operation frequency. To sum up, these results demonstrate the
superiority of our design especially in power efficiency.

V. CONCLUSIONS AND FUTURE WORK

This work presents an FPGA-based approximate multiplier
design for FP8. More specifically, we analyze the features of
different FPGA structures and achieve fine-grained optimizing
hardware implementation. The experimental results demon-
strate that our design achieves the lowest LUT consumption
and power usage compared with the existing FPGA-based 8-
bit designs. Furthermore, we deploy the proposed design in
the inference phase of typical DNN accelerators, validating
its effectiveness and power efficiency. We are conducting
further research in the following: 1. Integrating the proposed
design into emerging DNN models, such as graph neural
network models, large language models and diffusion models,
to further demonstrate its advantages. 2. Performing fine-
grained optimizations on additional FPGA platforms, such as
Microchip and Lattice. 3. Enhancing the current approximation
methods to reduce accuracy loss.

REFERENCES

[1] M. Dampfhoffer, T. Mesquida, A. Valentian, and L. Anghel,
“Backpropagation-Based Learning Techniques for Deep Spiking Neural
Networks: A Survey,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 35, no. 9, pp. 11 906–11 921, 2024.

[2] Q. Han, Y. Hu, F. Yu, H. Yang, B. Liu, P. Hu, R. Gong, Y. Wang,
R. Wang, Z. Luan, and D. Qian, “Extremely Low-bit Convolution
Optimization for Quantized Neural Network on Modern Computer
Architectures,” in Proceedings of the 49th International Conference on
Parallel Processing (ICPP). New York, NY, USA: ACM, 2020.

[3] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He,
“ZeroQuant: Efficient and Affordable Post-Training Quantization for
Large-Scale Transformers,” in Advances in Neural Information Process-
ing Systems, vol. 35. Curran Associates, Inc., 2022, pp. 27 168–27 183.

[4] H. Shen, N. Mellempudi, X. He, Q. Gao, C. Wang, and M. Wang,
“Efficient Post-training Quantization with FP8 Formats,” in Proceedings
of Machine Learning and Systems, vol. 6, 2024, pp. 483–498.

[5] D. R. Lutz, A. Saini, M. Kroes, T. Elmer, and H. Valsaraju, “Fused FP8
4-Way Dot Product With Scaling and FP32 Accumulation,” in 2024
IEEE 31st Symposium on Computer Arithmetic (ARITH). IEEE, 2024,
pp. 40–47.

[6] S. K. Lee, A. Agrawal, J. Silberman, M. Ziegler, M. Kang, S. Venkatara-
mani, N. Cao, B. Fleischer, M. Guillorn, M. Cohen et al., “A 7-nm
Four-Core Mixed-Precision AI Chip With 26.2-TFLOPS Hybrid-FP8
Training, 104.9-TOPS INT4 Inference, and Workload-Aware Throttling,”
IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp. 182–197, 2021.

[7] S. K. Venkataramanaiah, J. Meng, H.-S. Suh, I. Yeo, J. Saikia, S. K.
Cherupally, Y. Zhang, Z. Zhang, and J.-S. Seo, “A 28-nm 8-bit Floating-
Point Tensor Core-Based Programmable CNN Training Processor With
Dynamic Structured Sparsity,” IEEE Journal of Solid-State Circuits,
vol. 58, no. 7, pp. 1885–1897, 2023.

[8] A. C. Elster and T. A. Haugdahl, “Nvidia Hopper GPU and Grace CPU
Highlights,” Computing in Science & Engineering, vol. 24, no. 2, pp.
95–100, 2022.

[9] C. Chen, S. Yang, W. Qian, M. Imani, X. Yin, and C. Zhuo, “Optimally
Approximated and Unbiased Floating-Point Multiplier with Runtime
Configurability,” in Proceedings of the 39th international conference
on computer-aided design (ICCAD). ACM, 2020, pp. 1–9.

[10] M. S. Ansari, B. F. Cockburn, and J. Han, “An Improved Logarithmic
Multiplier for Energy-Efficient Neural Computing,” IEEE Transactions
on Computers, vol. 70, no. 4, pp. 614–625, 2020.

[11] S. Zheng, Z. Li, Y. Lu, J. Gao, J. Zhang, and L. Wang, “HEAM:
High-Efficiency Approximate Multiplier optimization for Deep Neural
Networks,” in 2022 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2022, pp. 3359–3363.

[12] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxLib: Library of
FPGA-based Approximate Multipliers,” in Proceedings of the 55th
Annual Design Automation Conference (DAC). New York, NY, USA:
ACM, 2018, pp. 1–6.

[13] S. Ullah, H. Schmidl, S. S. Sahoo, S. Rehman, and A. Kumar, “Area-
Optimized Accurate and Approximate Softcore Signed Multiplier Archi-
tectures,” IEEE Transactions on Computers, vol. 70, no. 3, pp. 384–392,
2020.

[14] S. Ullah, S. Rehman, M. Shafique, and A. Kumar, “High-Performance
Accurate and Approximate Multipliers for FPGA-Based Hardware Ac-
celerators,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 41, no. 2, pp. 211–224, 2021.

[15] Y. Liu, S. Ullah, and A. Kumar, “BitSys: Bitwise Systolic Array Archi-
tecture for Multi-precision Quantized Hardware Accelerators,” in 2024
IEEE 32nd Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2024, pp. 220–220.

[16] S. Ullah, S. S. Sahoo, and A. Kumar, “AxOSpike: Spiking Neural
Networks-Driven Approximate Operator Design,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 43,
no. 11, pp. 3324–3335, 2024.

[17] S. Vakili, M. Vaziri, A. Zarei, and J. P. Langlois, “DyRecMul: Fast and
Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfig-
uration,” ACM Transactions on Reconfigurable Technology and Systems,
2024.

[18] V. Leon, T. Paparouni, E. Petrongonas, D. Soudris, and K. Pekmestzi,
“Improving Power of DSP and CNN Hardware Accelerators Using Ap-
proximate Floating-point Multipliers,” ACM Transactions on Embedded
Computing Systems, vol. 20, no. 5, pp. 1–21, 2021.

[19] AMD Xilinx. UltraScale Architecture Configurable Logic Block User
Guide. Accessed: 2024-11-11. [Online]. Available: https://docs.amd.
com/v/u/en-US/ug574-ultrascale-clb

[20] Altera Intel. Agilex™ 7 FPGAs and SoCs De-
vice Overview. Accessed: 2024-11-11. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/programmable/
683458/current/adaptive-logic-module-in-fpgas-and-socs.html

[21] M. van Baalen, A. Kuzmin, S. S. Nair, Y. Ren, E. Mahurin, C. Patel,
S. Subramanian, S. Lee, M. Nagel, J. Soriaga et al., “FP8 versus INT8
for efficient deep learning inference,” arXiv preprint arXiv:2303.17951,
2023.

[22] H. Luo and W. Sun, “Addition is all you need for energy-efficient
language models,” arXiv preprint arXiv:2410.00907, 2024.

[23] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, and A. Kumar, “Area-Optimized Low-Latency Approxi-
mate Multipliers for FPGA-based Hardware Accelerators,” in Proceed-
ings of the 55th Annual Design Automation Conference (DAC). ACM,
2018.

[24] N. Van Toan and J.-G. Lee, “FPGA-Based Multi-Level Approximate
Multipliers for High-Performance Error-Resilient Applications,” IEEE
Access, vol. 8, pp. 25 481–25 497, 2020.

[25] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A White Paper on Neural Network Quantization0,”
arXiv preprint arXiv:2106.08295, 2021.

https://docs.amd.com/v/u/en-US/ug574-ultrascale-clb
https://docs.amd.com/v/u/en-US/ug574-ultrascale-clb
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/adaptive-logic-module-in-fpgas-and-socs.html
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/adaptive-logic-module-in-fpgas-and-socs.html

	Introduction
	Preliminaries
	FP8 Formats
	FPGA Structure

	The Proposed Approximate Multiplier for FP8
	Approximate Multiplication for FP8
	Hardware Design
	AMD-FPGA-Based Design
	Altera-FPGA-Based Design

	Results and Discussion
	Experimental setup
	Error Evaluation
	Hardware Implementation and Evaluation
	Case Study: DNN Accelerator Integration

	Conclusions and Future Work
	References

