
Graph-OPU: A Highly Integrated FPGA-Based
Overlay Processor for Graph Neural Networks

Ruiqi Chen1, Haoyang Zhang1, Shun Li2, Enhao Tang2, Jun Yu1, Kun Wang1, *
1State Key Lab of ASIC & System, Fudan University, Shanghai, China

2College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
˚kun.wang@ieee.org

Abstract—Field-programmable gate array (FPGA) is an ideal
candidate for accelerating graph neural networks (GNNs). How-
ever, FPGA reconfiguration is a time-consuming process when
updating or switching between diverse GNN models across differ-
ent applications. This paper proposes a highly integrated FPGA-
based overlay processor for GNN accelerations. Graph-OPU
provides excellent flexibility and software-like programmability
for GNN end-users, as the executable code of GNN models are
automatically compiled and reloaded without requiring FPGA
reconfiguration. First, we customize the instruction sets for the
inference qprocess of different GNN models. Second, we propose
a microarchitecture ensuring a fully-pipelined process for GNN
inference. Third, we design a unified matrix multiplication to
process sparse-dense matrix multiplication and general matrix
multiplication to increase the Graph-OPU performance. Finally,
we implement a hardware prototype on the Xilinx Alveo U50 and
test the mainstream GNN models using various datasets. Graph-
OPU takes an average of only 2 minutes to switch between differ-
ent GNN models, exhibiting average 128ˆ speedup compared to
related works. In addition, Graph-OPU outperforms state-of-the-
art end-to-end overlay accelerators for GNN, reducing latency
by an average of 1.36ˆ and improving energy efficiency by an
average of 1.41ˆ. Moreover, Graph-OPU achieves up to 1654ˆ
and 63ˆ speedup, as well as up to 5305ˆ and 422ˆ energy
efficiency boosts, compared to implementations on CPU and GPU,
respectively. To the best of our knowledge, Graph-OPU represents
the first in-depth study of an FPGA-based overlay processor for
GNNs, offering high flexibility, speedup, and energy efficiency.

I. INTRODUCTION

Graph Neural Networks (GNNs) have been applied in nu-

merous fields, including recommendation systems, modeling

physics systems, traffic prediction, and compound-protein in-

teractions [1]. With its abundant parallel computing resources

and high energy efficiency, field-programmable gate array

(FPGA) is an ideal candidate for accelerating graph neural net-

works (GNNs) [2]. However, with the increasing complexity of

the data dimensions and structures, accelerating one specific

GNN model is no longer sufficient. Different GNN models

are utilized within the same task to get better results [3, 4].

Fast model switching on FPGA-based GNN accelerators has

become a new challenge.

Many FPGA-based works to accelerate GNN inference have

emerged in recent years (e.g., AWB-GCN [5], LW-GCN [6],

BoostGCN [7] and I-GCN [8]). While these accelerators can

significantly improve the performance of GNNs, these acceler-

ators are only designed to support a specific GNN model and

their scalability is limited. Recent studies have tried to design

the FPGA-based end-to-end overlay accelerator for GNN to be

compatible with different GNN models. DeepBurning-GL [9]

* Corresponding author.

provides a set of pre-built templates that can be fused and

parameterized by users to generate the final accelerator design.

FP-GNN’s [10] Adaptive GNN Accelerator (AGA) framework

utilizes a unified processing module that can support the

different phases in GNN models. FlowGNN [11] proposes a

novel and scalable dataflow architecture that flexibly supports

multiple GNN models based on message passing mechanisms.

However, all of these designs require a considerable amount

of reconfiguration time, involving preparation, logic synthesis,

placement and routing, implementation, and generating the

bitstream file [12]. It means that users may encounter a long

wait time when switching GNN models. In addition, the ideal

design should not compromise performance for flexibility.
Motivated by the emerging requirements, we propose

Graph-OPU, a highly integrated FPGA-based overlay proces-

sor for GNN inference. To the best of our knowledge, Graph-

OPU is the first hardware architecture specifically designed

for mainstream GNNs with software programmability. Graph-

OPU mainly consists of our customized instruction sets and

several designs at the microarchitecture level that effectively

eliminate the reconfiguration process. Moreover, Graph-OPU

maintains excellent performance and scalability. To summa-

rize, our contributions are listed as follows:

‚ User Friendliness: We design an overlay processor for
various mainstream GNN models (Table I). To the best

of our knowledge, Graph-OPU is the first FPGA-based

general processor for GNN acceleration, supporting quick

model switching for users.

‚ Software-Hardware Co-optimization: We propose a
GNN-specific instruction set architecture (ISA) and mi-

croarchitecture, optimized for computation and data com-

munication to increase the overall efficiency.

‚ High Computation Efficiency: We design a unified

matrix multiplication for sparse matrix multiplication

(SpMM) and general matrix multiplication (GEMM)

based on the optimized PCOO format.

‚ Competitive Performance with Flexibility: Graph-OPU
outperforms related works with a significant speedup of

128ˆ when switching between different GNN models.

Graph-OPU also outperforms the state-of-the-art (SOTA)

end-to-end overlay accelerators for GNN by 1.36ˆ la-

tency reduction and 1.41ˆ energy efficiency improvement

on average. Compared with CPU and GPU, Graph-OPU

achieves up to 1654ˆ and 63ˆ speedup, as well as up to

5305ˆ and 422ˆ better energy efficiency, respectively.

228

2023 33rd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/23/$31.00 ©2023 IEEE
DOI 10.1109/FPL60245.2023.00039

TABLE I
INFERENCE PHASES OF DIFFERENT GNN MODELS

Model Edge Features Extraction (EFE) Node Features Aggregation (NFA) Node Features Combination (NFC)

GCN [13] Muv “ EFE tHuu “ Hu Av “ NFApMuvq “ ř
Muv Hv “ NFC tσ tW pHv,Avquu

LightGCN [14] Muv “ EFE tHuu “ Hu Av “ NFApMuvq “ ř
Muv Hv “ Av

GAT [15] Zk
uv “ Wk

e Hu, euv “ LR
´
ak ¨ Concat

´
Wk

e Hv, Zk
uv

¯¯
αk
u “ Softmax

´
ekuv

¯
, Ak

v “
ř

αk
vZk

uv Hv “ σ
´
Concat

´
Ak

v

¯¯

GIN [16] Muv “ EFE tHuu “ Hu Av “ NFA tMuvu “ ř
Muv Hv “ NFC tσ tBN tW pHv ` Avquuu

GraphSage [17] Muv “ EFE tHuu “ Hu Av “ NFApMuvq “ Mean tMuvu Hv “ NFC tσ tW pHv,Avquu

TABLE II
GNN NOTATIONS

Notation Description Notation Description
u/v Source/ Target node Av Features of neighbors to be aggregated

Muv Edge message from u and v Wv /We Weights of nodes/edges

euv Edge between u and v k Number of GNN layers

Hu /Hv Features of node u/v Zuv /av Vector of attention heads/attention weights

TABLE III
COMPARISON OF THE MODEL SWITCHING TIME WITH OTHER

OPEN-SOURCE ACCELERATORS.

Accelerators Models Avg (min)
GCN
GATFlowGNN
GIN

569.15

Ref [18] GCN 85.92
Ref [19] GCN 120.47

II. BACKGROUND AND MOTIVATION

A. Background

Table II defines the notations in GNN inference phases.

The inference processes of these GNN models can be sum-

marized in three steps: (1) Edge Feature Extraction (EFE),
which extracts meaningful information from edge attributes

for better graph representation; (2) Node Feature Aggregation

(NFA), which aggregates neighboring node features to cap-
ture local graph structure; and (3) Node Feature Combination

(NFC), which combines aggregated features with learnable
weights and activation functions to generate expressive node

embeddings. As one of the first graph model, GCN [13]

directly duplicates source node feature for EFE, sums up
all the messages from neighboring nodes to be aggregated for

NFA, and combines aggregated feature with local features
for NFC. As for other variant, the improvement of Light-
GCN [14] lies in its simplification of the GCN architecture

by removing the learnable weight matrices and non-linear

activation functions in its NFA and NFC processes. The

enhancement of GAT [15] is that it uses self-attention for

more precise edge value calculation in the NFA process.

Moreover, the use of LeakyReLU (LR) in GAT can improve
the model’s performance, especially in cases where the data

has subtle negative values and requires more nuanced feature

learning. GIN [16] improves the NFA stage by using an MLP
and Batchnorm (BN) to aggregate node features, combining
a learnable parameter to control the importance of central

node features. GraphSAGE [17] adopts different aggregation

functions (e.g., Mean) to complete the NFA stage, allowing

it to learn inductive node embeddings on large graphs.

B. Motivation

To better understand the flexibility of existing solutions, we

conducted an extensive survey on various FPGA-based GNN

Fig. 1. Configuration of instruction block and instruction unit.

accelerators and overlay accelerators, focusing on evaluating

model switching time. This process consists of key stages such

as preparation, logic synthesis, placement and routing, imple-

mentation, and bitstream file generation. We selected three

open-source works developed using Verilog HDL [18] and

HLS [11, 19] for testing configuration time. Results indicate

a minimum of 85 minutes is needed for reconfiguration (As

shown in Table. III and details in Sec V). This substantial time

investment is required when users need to adjust configuration

parameters or switch models [20]. Therefore, a flexible FPGA-

based GNN tool with software-programmability is needed to

support using different GNN models in a single task [3, 4]

while maintaining competitive performance.

III. INSTRUCTION SET ARCHITECTURE

Graph-OPU’s data execution path, determined by instruc-

tions, enables compatibility with multiple GNN models, unlike

traditional accelerators’ singular fixed datapath. GNN oper-

ations are adapted based on the OPU ISA framework [21],

with supplementary parameters incorporated. Furthermore, we

enhance the instruction execution mechanism for increased

efficiency on the underlying hardware.

A. Instruction Description

Each of our 32-bit complex instructions is classified into

either Conditional (C-type) or Unconditional (U-type) types,

as depicted in Fig. 1. C-type instructions determine target

operations and set trigger conditions, while U-type instructions

provide related operation parameters for their paired C-type.

We maintain the instruction unit and block design of the OPU

ISA, identifying the lowest (Type) and highest (immi) bits

229

Fig. 2. Overview of Graph-OPU microarchitecture and optimized data formats. (a) Graph-OPU microarchitecture; (b) the sparse matrix; (c) PCOO format
for sparse matrix; (d) optimized PCOO format for sparse matrix.

of each instruction. This design is retained due to the frequent

data operations in GNNs, allowing for additional operational

details and ensuring continuity and integrity of operations to

the greatest extent.

Matrix operations in GNNs often result in numerous identi-

cal instructions within an instruction block. GNNs exhibit data

structure and operation irregularities, such as alternating be-

tween SpMM and GEMM. Thus, we divide C-type instructions

into four categories using 2-bit in opcode: memory access, data
loading, calculation, and post-processing, corresponding to the

micro-architecture. Instructions are executed in their respective

modules, and a 4-bit one-hot vector (depen) expresses depen-
dencies among these modules, enabling better parallelism in

GraphOPU operations.

1) Memory Access manages data transfer between High

Bandwidth Memory (HBM) and onboard memory, as well

as the reverse transfer from onboard memory to HBM.

The operation mode is switched using the load mode bit,
while data type identifies the data source, which can be
sparse data, weight, or other types. The mini parameter

controls the HBM mini switch module.

2) Data Loading moves data from the onboard memory

to the computational module. Its operation pattern can

be tailored by adjusting the data copy and parall pa-
rameters, aligning with the data requirements of the

computational module.

3) Computational controls all processing engines (PEs) and
the selective adder-tree. By utilizing the selective adder-

tree, the datapath can be altered to accommodate specific

computational processes, such as the attention calculation

in GAT, which requires multiple multiplications followed

by accumulation. The parallelism of multipliers can be

adjusted using the parall parameter, ensuring sufficient
design space exploration for different networks.

4) Post-process includes activation, non-linear, and interme-
diate result addition operations. A selected combination

of operations is executed when the post-processing is

triggered. Activation functions include ReLU, GELU, and

LeakyReLU, while non-linear operations consist of batch

normalization and softmax.

In addition to the four categories of C-type instructions,

several U-type instructions have been designed. These U-type

instructions provide more specific parameters in conjunction

with their related C-type instructions. Such parameters include

memory address, memory size, operation round, and operation

dimension.

B. Realization of the Graph-OPU ISA on TVM and LLVM
We utilize TVM [22] and LLVM [23] to convert user’s

model files (.pth or ONNX) to Graph-OPU ISA. TVM out-

lines the model’s computational steps and schedules them

efficiently. Considering the Graph-OPU architecture, TVM

optimizes computations for performance and energy efficiency.

TVM generates LLVM intermediate representation (IR) code

for Graph-OPU hardware, matching vector-type IR code to

the microarchitecture’s computational engine and intrinsic

functions, ensuring efficient microarchitecture support.
LLVM generates Graph-OPU ISA instructions for GNN

models using IR and intrinsics. The IR to ISA conversion

employs direct mapping. If matching intrinsics are unavailable,

instructions can’t be divided, and users must devise custom

methods for desired operations. For instance, GAT’s EFE op-

eration involves twice sequential multiplications and additions,

which are mapped to LLVM intrinsics using initial results as

weight input for subsequent operations.
Compared to model switching through re-configuration,

the OPU-ISA-based compiler has demonstrated significantly

reduced time consumption. Detailed results of the compiler

time consumption are presented in Sec V.

IV. MICROARCHITECTURE

The hardware modules in the microarchitecture of Graph-

OPU are fixed. At runtime, different GNN model operations

are implemented according to the instruction updates and by

controlling the transformation of the datapath. Therefore, the

hardware modules in Graph-OPU are directly controlled by the

parameters in the instructions, which also means that Graph-

OPU can explore more parallel combinations. As shown in

Fig. 2(a), the microarchitecture of Graph-OPU includes a

memory access module, data loading module, computational

engine module, and post-process module.

230

PE0

cycle0cycle0 cycle1

PE1

PE0

cycle0 cycle1

PE1

PE0

PE1

PE0

PE1

Fig. 3. Computational Engine Module. (a) The architecture of the PE with HBM datapath; (b) the PE parallelization to compute on a sparse matrix; (c)
traditional adder-tree with conflict; (d) the selective adder-tree.

A. Memory Access Module

The performance of FPGA-based GNN accelerators is often

bottlenecked by memory bandwidth [24, 25] due to the large

amounts of data that need to be stored and transferred. While

High-Bandwidth Memory (HBM) provides sufficient memory

bandwidth, it requires customized access mechanisms to fully

utilize FPGA resources. Hence, we design a memory access

module that can efficiently read from and write to HBM,

catering to the data requirements of our system.

The corresponding data and instructions are generated by

the user’s PyTorch [26] model file on the PC side, are

transmitted via the PCIe, and stored in the HBM. The HBM

operates at 450MHz and utilizes a total of 28 channels with

256-bit per channel. The Graph-OPU runs at 225MHz, which

results in a 512-bit width for each channel in the Memory

Access Module. With a maximum access number of 21 HBM

channels, this design leverages the peak bandwidth (316 GB/s)

of the Alveo U50 platform [27], ensuring optimal perfor-

mance and efficient memory access. The Memory Access

Module enables efficient data communication between the

HBM and on-chip Block RAM (BRAM), based on relevant

instructions. The BRAM stores weight data (Weight), sparse
data (Sparse), and other computation-related data (Others).
As shown in Fig. 2(a), weight data includes data in dense

vector form that participates in computation. For accessing

the dense vectors, we utilize three-channels, where one of

the channels transfers value, and the other two channels are

for the row index and column index corresponding to the

values. Since adjacency matrices are extremely sparse, with

less than 1% non-zero elements [28], buffering all sparse data

in BRAM would consume an impractical amount of storage.

Thus, for accessing sparse data (Sparse), only buffering and
computing the non-zero elements is necessary. Building on

the packet-level column-only coordinate-list (PCOO) format

in [6] (Fig. 2(c)), we propose an optimized PCOO format to

compress the sparse matrix. Our format contains all element

information in 64 bits, with 1 bit for the end or row signal

(eor), 31 bits for column index (col), and 32 bits for value
(val), shown in Fig. 2(d). The memory access module designs
leverages 8 HBM channels for accessing the sparse or others,

allowing for the transfer of 64 sparse elements in a single

operation, which significantly enhances data parallelism.

B. Data Loading Module

The data loading module selects and replicates data to

facilitate parallel computation on our architecture, as described

in detail in the following section.

To facilitate parallel computation on our architecture, the

data loading module retrieves data from the on-chip buffer,

then reorders and divides it as needed. To ensure data cor-

rectness, the module selects data (e.g., A, H) to import into
the buffer based on the current operation progress, provided

by the C-type instruction. To support our proposed parallel

computation strategy, the module replicates sparse elements

and dense vectors multiple times. The advantages are twofolds:

1. It enables exploration of a larger parallel space for sparse

elements; 2. It prevents reading conflicts for dense vectors. The

following section provides further details on this approach.

C. Computational Engine Module

The computational process of GNN involves a significant

number of matrix multiplications, such as SpMM and GEMM.

The efficiency of the matrix multiplier is critical to the accel-

eration performance [29]. Therefore, we design the computa-

tional engine module to handle these matrix multiplications,

which comprises PEs and selective adder-tree, shown in Fig. 3.

We have customized the datapath, storage and sharing of

the data to meet the requirements of SpMM and GEMM to

fully utilize FPGA resources. Fig. 3(a) illustrates the archi-

tecture of the PE that includes HBM datapath. Specifically,

we utilize BRAMs to implement a Weight column shared by

multiple multipliers. With this design, one PE can perform the

multiplication of 64 sparse elements with one Weight column

in parallel. To leverage the potential parallelism further, we

consider duplicating these 64 elements n times and performing
the multiplication with n columns of Weights separately. In

our Graph-OPU, we set n to 16, where 8 PE blocks perform
the multiplication of 64 sparse elements with 16 columns

of distinct weights. Upon the completion of computation for

all the 16 column weights, the data loading module updates

the weights of the 16 columns, copies and distributes them

231

TABLE IV
COMPARISON WITH OTHER FPGA-BASED END-TO-END OVERLAY GNN ACCELERATORS

FPGA Model
Freq
(MHz)

LUT FF BRAM DSP
Efficiency

(Throughput/DSPs)

Graph-OPU Alveo-U50

GCN

225 475K 427K 927 2742 0.157
Light-GCN
GAT
GIN

GraphSage
DeepBurning-GL Alveo-U50 GCN 200 671K 505K 403 5892 0.043

FP-GNN VCU128
GCN

225
717K 517K 1792 8192

0.126
GAT 1068K 727K 1792 8740

FlowGNN Alveo-U50
GCN

300
229K 192K 185 1048

N/AGAT 149K 134K 335 2488
GIN 263K 166K 204 1741

to the 16 different PE blocks. As shown in Fig. 3(b), this

design ensures the independence of each PE operation and

solves the imbalance problem during sparse matrix operation.

Suppose we were using two PEs or threads to compute

on a sparse matrix. The intuitive approach to parallelizing

SpMM is row-based parallelization [30], also illustrated in

Fig. 3(b). This approach requires two steps to process the

computation. However, this workload distribution leads to

imbalanced resource utilization and energy waste. Our design

ensures the independence of each PE operation and allevi-

ates the workload imbalance during sparse matrix operations.

Meanwhile, the optimized PCOO format retains compatibility

with dense matrices and facilitates fast local encoding through

a simple counter mechanism, thereby enabling the datapath to

be compatible with GEMM.

As shown in Fig. 3(d), a selective adder-tree based on

the reconfigurable adder-tree [31] is employed. This design

utilizes the eor signal to alter the datapath, enabling the

accurate accumulation of product results from different rows.

This approach mitigates the conflicts that arise from varying

inputs in traditional adder-trees with fixed datapaths, as il-

lustrated in Fig. 3(c). The selective adder-tree design offers

improved flexibility and adaptability for processing diverse

inputs without conflicts.

D. Post-process Module

The post-process module consists of three key units: the

summation unit, the nonlinear unit, and the activation function

unit. The summation unit comprises accumulators and adder-

trees, which generate outputs that are used for softmax, GAT

attention computation, and other operations. The accumulator

can also output the current number of valid data for subse-

quent operations. The summation unit can flexibly perform

various nonlinear operations, such as softmax and batch-

normalization, under the control of instructions. To optimize

for hardware implementation, we use a base of 2 instead of e
for power calculation, enabling us to implement division using

shift operation [32], while incurring an insignificant accuracy

loss. The activation function unit includes three standard

activation functions: ReLU, LeakyReLU, and GELU. These

functions are implemented using a multiplier with instruction

control.

E. Collaboration Between Different Modules

Graph-OPU implements the inference of GNN models by

generating instructions to schedule these four modules. For the

inference process of GCN, LightGCN, GIN, and GraphSAGE,

EFE and NFA only need to complete the aggregation

operation, consisting of SpMM. According to the instructions

generated in the model file, SpMM is completed by Graph-

OPU in the following process: fetching A (adjacency matrix)

and HW (features after transformation), caching, copying

and loading them into the computational module, determining

whether post-process is needed, and writing the results back to

HBM. The NFC stages of GCN and GIN are implemented by

GEMM, using our unified computational module. As to com-

plete the unique operations of GEMM, the relevant instructions

call the units in the post-process module to distinguish it

from SpMM. For GAT, the weights among the nodes are

recalculated in the EFE stage, and then the SpMM and

GEMM operations are performed successively, followed by

the LeakyReLU operation in the post-process Module. After

entering the NFA stage, the post-process Module is called to

perform the softmax operation first, and then the GEMM is

executed to complete the aggregation. In the final NFC stage,

only the post-process Module needs to be called to execute

the activation function on the aggregated results. The whole

process is executed by the instructions generated in the model

file to realize the collaboration between different modules.

V. IMPLEMENTATION AND RESULTS

A. Experiment Setup

We implement Graph-OPU in Verilog HDL on a Xilinx

Alveo U50 FPGA, which integrates 8GB of HBM, offering

a peak memory bandwidth of 316GB/s. Though Graph-OPU’s

theoretical maximum frequency is 330MHz, we operate it at

225MHz for optimal memory bandwidth utilization. Hardware

resource usage is derived from synthesis and implementation

reports in Vivado 2020.2. GNN models are defined using

PyTorch with the Pytorch Geometric (PyG) library [33],

and features and weights are quantized to 32-bit fixed-point,

allowing PEs to utilize the built-in integer DSPs on the FPGA.

Previous research demonstrates that INT32 achieves negligible

accuracy loss compared to FP32 for GNNs [34].

Dataset. We comprehensively evaluate Graph-OPU using

the mainstream GNN models: GCN, Light-GCN, GIN, GAT,

232

TABLE V
COMPARISON OF THE MODEL SWITCHING TIME WITH OTHER

OPEN-SOURCE ACCELERATORS.

Accelerators Models Model switching time (min) Avg (min)
GCN 1.54

Light-GCN 1.21
GAT 2.31
GIN 2.12

Graph-OPU

GraphSAGE 3.44

2.02

GCN 517.41
GAT 468.28FlowGNN1

GIN 721.75
569.15

Ref [18]2 GCN 85.92 85.92

Ref [19]3 GCN 120.47 120.47
1 https://github.com/sharc-lab/FlowGNN
2 https://github.com/GraphSAINT/GNN-ARCH
3 https://github.com/jasonlin316/GCN-Inference-Acceleration-HLS

and GraphSAGE. All models have two layers. GCN, GAT,

and GraphSAGE are evaluated using three typical datasets,

CiteSeer, Cora, and PubMed. Light-GCN as a recommendation

system is evaluated using Gowalla, LastFM, and Yelp2018.

GIN is evaluated using MUTAG, PROTEINS, and PTC [35].

Comparison platform. To evaluate Graph-OPU, we com-
pare it to SOTA end-to-end overlay accelerators (FlowGNN,

FP-GNN, and DeepBurningGL) and some representative

FPGA-based specific GCN accelerators. We also compare

Graph-OPU with the Intel I7-12700KF CPU and Nvidia

RTX A5000 GPU platforms. For the GPU, we use a batch

size of 1, ensuring fair comparison for real-time streaming

graph inference, as batching graphs delays processing. This

approach is consistent with other works [11, 21, 36, 37], which

commonly employ batch size 1 for comparisons.

B. Comparison with FPGA-based Accelerators

Table IV compares Graph-OPU with SOTA end-to-end over-

lay accelerators on the same GNN model. The computing re-

source consumption of different GNN models implemented in

prior works vary significantly. The Efficiency metric (Through-

put/DSP) is utilized to assess runtime computational resource

efficiency [14], representing the proportion of valuable com-

putation conducted by the DSP on average during execution.

The Graph-OPU demonstrates better efficiency compared to

existing custom designs.

1) Comparison in terms of model switching time: To eval-
uate the beniefits of Graph-OPU in reducing model switching

time, we compare Graph-OPU with the only three available

open-source works. These are FlowGNN [11], Ref [18], and

Ref [19], as shown in Table V. Note that although Ref [18]

and Ref [19] are FPGA-based specific GCN accelerators that

cannot switch different GNN models, their FPGA implement

processes are almost identical to model switching time. There-

fore, we believe their data is still valuable for comparison.

Graph-OPU has substantially reduced model switching time,

resulting in an average acceleration of 128ˆ compared to other

approaches. This improvement highlights the effectiveness of

the ISA design and software compiler. FlowGNN consumes a

significant amount of time due to its development using HLS,

which includes numerous matrix operations. These designs

TABLE VI
COMPARISON OF EXECUTION LATENCY AND ENERGY EFFICIENCY (EE)
WITH SOTA END-TO-END OVERLAY ACCELERATOR ON GCN INFERENCE.

Dataset FlowGNN FP-GNN DeepBurning-GL Graph-OPU

Latency
(μs)

Cora 6.912 4.24 3.3 3.44
CiteSeer 8.332 7 N/A 5.13
PubMed 53.22 66.4 101.9 57.78

EE
(graph/kJ)

Cora 7.77E6 1.77E7 N/A 1.77E7
CiteSeer 6.44E6 1.07E7 N/A 1.19E7
PubMed 1.01E6 1.13E6 N/A 1.05E6

Fig. 4. Comparison with CPU and GPU implementations(Normalized over
CPU Intel I7-12700KF). (a) Speedup ratio comparison; (b) Improvement ratio
of energy efficiency comparison.

cause the HLS compilation to HDL files and subsequent

synthesis to consume a considerable amount of time.

2) Comparison in terms of performance: Table VI lists the
execution latency and energy efficiency of Graph-OPU and

SOTA end-to-end overlay accelerators on the GCN inference.

We compare their performance on the Cora, CiteSeer, and

PubMed datasets. We set the same model configuration, using

a two-layer GCN, with node embedding dimension being 16

and no edge embedding. While Graph-OPU may not exhibit

the highest level of performance on some specific datasets, it

arhieves average performance 1.36ˆ faster and 1.41ˆ more

energy efficient than these SOTA accelerators. Deep Burn-

ing and FP-GNN achieves better performance by utilizing

a large number of DSPs without employing specific sparse

matrix multiplication optimizations. Flow-GNN is capable of

achieving better performance on the lager matrix (PubMed) by

utilizing multiple node transformation and multiple message

passing through its message passing mechanism. Nevertheless,

Graph-OPU exhibits competitive performance and energy ef-

ficiency with high flexibility.

C. Comparison with CPU and GPU

As shown in the Fig. 4 (a), we compare the speedup ratio

to the CPU (Intel I7-12700KF) and GPU (Nvidia RTX A5000

GPU) implementations. All data is normalized with respect to

Intel I7-12700KF. Graph-OPU performs 11-1654ˆ faster than

CPU and 0.4-63ˆ faster than GPU for these GNN models

with different datasets. In contrast, Graph-OPU performs well

in most models but slightly less in Light-GCN models. Since

it contains the biggest matrix in the dataset and the concat

operation requires taking a series of accumulation for huge-

size matrixes. We compare the improvement ratio of energy

efficiency of Graph-OPU on different platforms in Fig. 4

(b). The plotted performance is also normalized with respect

233

to CPU. Graph-OPU shows the average 2013ˆ (23-5305ˆ)
and 109ˆ (3-422ˆ) better energy efficiency compared with
CPU and GPU, respectively. The result demonstrates the

architectural advantages of Graph-OPU.

VI. CONCLUSION

We present Graph-OPU, a highly integrated FPGA-based

overlay processor for GNN. Graph-OPU allows users to

execute and fast switch between different mainstream GNN

modules. Specifically, the memory access module and data

loading modules provide excellent data parallelism by ef-

ficiently using HBM’s high bandwidth and multiple chan-

nels. The computational engine module performs SpMM and

GEMM in GNN as a unified matrix multiplication with fully

pipelined parallelization, while the post-process module com-

pletes other operations. Graph-OPU has both scalability and

the potential to be compatible with the newly emerging GNN

models. On average, Graph-OPU achieves a 128ˆ speedup

in model switching time compared to other works. Graph-

OPU outperforms the SOTA overlay accelerators for GNN by

1.36ˆ speedup and 1.41ˆ energy efficiency improvement on

average. Compared with CPU and GPU, Graph-OPU achieves

up to 1654ˆ and 63ˆ speedup, as well as up to 5305ˆ and

422ˆ better energy efficiency, respectively.

ACKNOWLEDGMENT

This work was financially supported in part by National

Key Research and Development Program of China under Grant

2021YFA1003602, in part by Shanghai Pujiang Program under

Grant 22PJD003, and in part by the Natural Science Founda-

tion for Distinguished Young Scholars of Jiangsu Province,

China under Grant BK20200038.

REFERENCES

[1] Atz, K. et al., “Geometric Deep Learning on Molecular Repre-
sentations,” Nat Mach Intell, 2021.

[2] Zhang, C. et al., “H-GCN: A Graph Convolutional Network
Accelerator on Versal ACAP Architecture,” in FPL, 2022.

[3] Deo, N. et al., “Multimodal Trajectory Prediction Conditioned
on Lane-Graph Traversals,” in PMLR, 2022.

[4] Wang, Y. et al., “Multi-View Graph Contrastive Representation
Learning for Drug-Drug Interaction Prediction,” in WWW, 2021.

[5] Geng, T. et al., “AWB-GCN: A Graph Convolutional Network
Accelerator with Runtime Workload Rebalancing,” in MICRO,
2020.

[6] Tao, Z. et al., “LW-GCN: A Lightweight FPGA-based Graph
Convolutional Network Accelerator,” ACM Trans. Reconfig-
urable Technol. Syst., 2022.

[7] Zhang, B. et al., “BoostGCN: A Framework for Optimizing
GCN Inference on FPGA,” in FCCM, 2021.

[8] Geng, T. et al., “I-GCN: A Graph Convolutional Network
Accelerator with Runtime Locality Enhancement through Is-
landization,” in MICRO, 2021.

[9] Liang, S. et al., “DeepBurning-GL: an Automated Framework
for Generating Graph Neural Network Accelerators,” in ICCAD,
2020.

[10] Tian, T. et al., “FP-GNN: Adaptive FPGA Accelerator for Graph
Neural Networks,” Future Gener Comp Syst, 2022.

[11] Sarkar, R. et al., “FlowGNN: A Dataflow Architecture for
Universal Graph Neural Network Inference via Multi-Queue
Streaming,” in HPCA, 2023.

[12] Seyoum, B. et al., “Automating the design flow under dy-
namic partial reconfiguration for hardware-software co-design
in FPGA SoC,” in SAC, 2021.

[13] Bruna, J. et al., “Spectral Networks and Locally Connected
Networks on Graphs,” arXiv, 2014.

[14] He, X. et al., “LightGCN: Simplifying and Powering Graph
Convolution Network for Recommendation,” in ACM SIGIR,
2020.

[15] Veličković, P. et al., “Graph Attention Networks,” arXiv, 2018.
[16] Xu, K. et al., “How Powerful are Graph Neural Networks?” in

ICLR, 2019.
[17] Hamilton, W. et al., “Inductive Representation Learning on

Large Graphs,” in NeurIPS, 2017.
[18] Zhang, B. et al., “Hardware Acceleration of Large Scale GCN

Inference,” in ASAP, 2020.
[19] Lin, Y. C. et al., “GCN inference acceleration using high-level

synthesis,” in HPEC, 2021.
[20] Guo, K. et al., “[DL] a survey of FPGA-based neural network

inference accelerators,” ACM Trans. Reconfigurable Technol.
Syst., 2019.

[21] Yu, Y. et al., “OPU: An FPGA-Based Overlay Processor for
Convolutional Neural Networks,” IEEE Trans. VLSI Syst, 2020.

[22] Chen, T. et al., “TVM: An automated End-to-End optimizing
compiler for deep learning,” in OSDI, 2018.

[23] Lattner, C. et al., “LLVM: a Compilation Framework for
Lifelong Program Analysis & Transformation,” in CGO, 2004.

[24] Yan, M. et al., “HyGCN: A GCN Accelerator with Hybrid
Architecture,” in HPCA, 2020.

[25] Kiningham, K. et al., “GRIP: A graph neural network acceler-
ator architecture,” IEEE Trans. Comput, 2022.

[26] Paszke, A. et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in NeurIPS, 2019.

[27] Chen, X. et al., “ReGraph: Scaling graph processing on HBM-
enabled FPGAs with heterogeneous pipelines,” in MICRO,
2022.

[28] Wu, C. et al., “SkeletonGCN: A simple yet effective accelerator
for GCN training,” in FPL, 2022.

[29] Gao, Y. et al., “SDMA: An efficient and flexible sparse-dense
matrix-multiplication architecture for GNNs,” in FPL, 2022.

[30] Song, L. et al., “Sextans: A streaming accelerator for general-
purpose sparse-matrix dense-matrix multiplication,” in FPGA,
2022.

[31] Wang, H. et al., “Spatten: Efficient sparse attention architecture
with cascade token and head pruning,” in HPCA, 2021.

[32] Xu, Z. et al., “CNN-based Feature-point Extraction for Real-
time Visual SLAM on Embedded FPGA,” in FCCM, 2020.

[33] Fey, M. et al., “Fast graph representation learning with PyTorch
geometric,” arXiv, 2019.

[34] Yuan, W. et al., “QEGCN: An FPGA-based accelerator for
quantized GCNs with edge-level parallelism,” J. Syst. Archit,
2022.

[35] Wei, S. et al., “Graph learning and its applications: A holistic
survey,” arXiv, 2023.

[36] GroqInc, “The challenge of batch size 1: Groq adds responsive-
ness to inference performance,” 2020.

[37] Qu, H. et al., “Jet tagging via particle clouds,” Phys. Rev. D,
2020.

234

