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Abstract— Molecular docking (MD) is one of the core steps
in the expensive and time-consuming process of drug design,
which is basically an optimization problem based on scoring
functions. AutoDock series MD software is widely accepted by
academia and industry, among which AutoDock Vina (Vina)
is the latest and most popular version due to its accuracy
and relatively high speed. However, contrast to its prior ver-
sion, i.e., AutoDock4, hardware acceleration approaches of Vina
are rarely reported. In this article, we propose Vina-field-
programmable gate array (FPGA), a hardware-accelerated Vina
implementation with FPGA that exploits the low-level paral-
lelism. First, the fixed-point quantization is analyzed and realized
to accelerate the MD algorithm with a better energy efficiency
in hardware. To boost the performance of the module-level
computation, multiple in-module hardware pipelines have been
designed and implemented. Besides, a strategy for fast accessing
to block RAM (BRAM) is implemented by utilizing the layout
of data, which brings four times memory access speed to the
intermolecular and intramolecular energy computing modules.
Under the same 140 ligand–receptor benchmarks, Vina-FPGA
performs up to 6.9× (average 3.7×) faster than a state-of-
the-art CPU does while consuming only 2.5% energy with
similar docking accuracies. Compared to the GPU-accelerated
implementation or Vina-GPU, the average energy consumption
of Vina-FPGA is merely 45%.

Index Terms— AutoDock Vina, field-programmable gate array
(FPGA), hardware accelerator, optimization algorithm.

I. INTRODUCTION

DRUG design has always been the forefront issue in
pharmaceutical industries, which normally takes more

than ten years of research and costs over 10 billion dollars [1].
Molecular docking (MD) is a core step in the current drug
design process for fast screening candidate drug molecules
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with computer algorithms, whose essence is an optimization
problem. The scoring functions are used to quantitatively
evaluate the docking accuracies [2], while a specific search
algorithm is leveraged to speed up the optimal results search-
ing process in the huge potential solution space. Different MD
software are equipped with different search algorithms and
scoring functions.

AutoDock Vina (Vina) [3] is an outstanding MD tool that
obtains the highest score on the latest test set CASF-2016
and outperforms all the other docking tools [4]. Despite the
similarity of their names, AutoDock4 [5] and AutoDock Vina
are different software with distinguishing scoring functions
and searching algorithms. Vina is much more preeminent than
AutoDock4 in terms of docking speed and docking accuracy
[3]. Nevertheless, the computation process of Vina is still
painfully time-consuming due to the massive combinatorial
possibilities of multidimensional data. The searching algorithm
used by Vina is the Iterated Local Search Global Optimizer
(ILSGO), which completes the global search (GS) with a
variant of multi-initial states simulated annealing (SA) algo-
rithm [6], [7], while a quasi-Newton method is used for a
gradient descent local search (LS) (in Vina’s case, Broyden–
Fletcher–Goldfarb–Shanno algorithm (BFGS) [3]). Although it
is possible to leverage the parallelism by a multicore platform
in Vina’s multi-initial states SA GS, which, in fact, is a
built-in feature of Vina via the Boost Library [8], hardware
accelerations of the SA and BFGS iterations are significantly
difficult due to the highly serialized and irregular processes in
them.

Some researchers focused on the Vina acceleration problem
via algorithmic improvements, such as the scoring function
optimizations [9], [10] and computing process optimizations
[11], [12], [13]. However, the acceleration effects of such
approaches are so far unsatisfactory. Apart from that, Virtu-
alFlow [14], an open-source drug design platform that equips
Vina as the virtual screening tool, greatly reduced huge-scale
screening time by 160 000 CPUs. However, this resource is
almost unaffordable for most researchers, not to mention its
huge power consumption. Besides, VirtualFlow only focuses
on the multicore parallelism rather than promoting the single-
core operation speed, which means that the speedup ratio only
comes from abundant CPU resources. Some prior studies have
tried the feasibilities of hardware-based Vina accelerations. For
example, Viking is a pioneer exploration in GPU acceleration
for Vina [15]. Unfortunately, due to the iterative nature of the
searching algorithm, Viking even takes longer computing time
on GPUs than the original CPU version.

In this article, we propose Vina-field-programmable gate
array (FPGA), a hardware-accelerated Vina implementa-
tion with FPGA. The parallelism of Vina is analyzed and
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categorized into three levels, namely, low-level parallelism
(LLP), mid-level parallelism (MLP), and high-level parallelism
(HLP). As we analyzed in Section II.B, Vina is equipped
with a built-in mechanism for the HLP, while the MLP
is significantly hard for the hardware acceleration due to
the iterative and irregular characteristics of Vina algorithm.
Therefore, a hardware-accelerated architecture, or Vina-FPGA,
in the LLP is proposed and realized on Xilinx XCKU060. The
key contributions of this work are given as follows.

1) Both the ILSGO and BFGS algorithms in Vina possess
the characteristics of strong dependencies and irregulari-
ties, which means that it is difficult to parallelize the iter-
ations of BFGS and ILSGO. Fortunately, we were able to
find parallelism at a lower level, such as the basic com-
puting modules in BFGS. Therefore, hardware pipelines
are widely adopted in those modules in Vina-FPGA.
To the best of our knowledge, Vina-FPGA is the first
reported FPGA accelerator with a significant speedup
for AutoDock Vina. Moreover, compared to the CPU
and GPU implementations under 140 ligand–receptor
benchmarks, Vina-FPGA averagely consumes only 2.5%
and 45% energy, respectively.

2) The intermolecular and intramolecular energy comput-
ing modules are the core steps of scoring function
calculation, which are based on a group of serial and
time-consuming tables looking up. Thus, this article
realizes the parallel calculation of intermolecular energy
and intramolecular energy with their internal pipelines
to improve the system performance.

3) To lower the computation complexity, the intermolecular
energy calculation is implemented by trilinear interpola-
tions based on the precalculated grid data from the host
CPU. Besides, each trilinear interpolation calculation
requires eight precalculated grid data, which are stored
in BRAM. However, limited by the number of BRAM
ports (up to two ports), it takes at least four cycles
to obtain these eight values in a normal design. This
article utilizes the characteristics of data organization
and maps the values of the vertex points in the grid to
four separate BRAM blocks. Thus, the vertex data used
in the trilinear interpolations will be evenly distributed
in the four BRAM blocks such that the data needed to
complete a trilinear interpolation can be accessed in one
cycle.

The rest of this article is structured as follows. Section II
introduces the background and motivation of this article.
Section III provides the proposed architecture and design of
Vina-FPGA. Section IV gives the details of the experimental
methodology for the acceleration and accuracy evaluations of
Vina-FPGA and discusses the results. Section V reports the
related work, while Section VI provides the conclusion and
looks out to the future work.

II. BACKGROUNDS

A. Searching Algorithm of Vina

The nature of an MD algorithm is an optimization problem,
which searches for the best ligand conformation (Con) in
the preset searching space or a docking box, that is, the
ligand, or the candidate drug molecule, in this configuration
has the lowest energy when it attaches to the given receptor
(normally, a target protein). A docking box is the possible
binding area of the given receptor molecule, which is normally

Fig. 1. POT of a ligand.

Algorithm 1 Iterated Local Search Global Optimizer

determined by a pharmaceutical professional and stored in the
initialization file of Vina. It is easy to understand that Vina
evaluates the energy among the ligand–receptor complex as
the objective, or the scoring function, which is the sum of
intramolecular energy (the energy among the atoms inside
the ligand molecule) and intermolecular energy (the energy
between the ligand molecule and the receptor). To simplify
and speed up the energy evaluation process, Vina looks up
the tables that store precalculated energy data to calculate
both intramolecular and intermolecular energy, which will be
discussed in Section III.D.

The Con of the ligand is determined by three factors,
including position, orientation, and torsion, as shown in Fig. 1,
which represent the spatial coordinates (three degrees of
freedom, x , y, and z in Fig. 1), the Euler angle transformations
(three degrees of freedom, α, θ , and ϕ in Fig. 1), and the
torsion angles (degrees of freedom depending on the number
of rotatable branches in the ligand molecule, i.e., one rotatable
branch adding one extra degree of freedom, e.g., ψ1 and ψ2
in Fig. 1) of the rotatable branches of the ligand, respectively.
Obviously, a huge combination of Con exists for the optimal
ligand Con searching, which requires huge computational
effort.

Vina uses a method called ILSGO to complete this mission,
as shown in Algorithm 1. First, random generates an initial
Con in the search space randomly [16]. The optimal Con is
then investigated by the iterative search (from line 3 to line 13),
the search depth (iteration times) of which is empirically
determined by the number of atoms (Natom) and the number
of rotatable branches (Ntorsion) in the ligand, as shown in
line 3. It is worth noting that the constants (105, 1050, 6, and
5250) in line 3 are empirically preset by the Vina algorithm,
which are not discussed in this article. As in a classical
SA algorithm, a mutate of current Con will be carried out,
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Algorithm 2 BFGS

i.e., the values in either POT will be randomly changed at
the beginning of each iteration. The LS of ILSGO is realized
by a gradient descent method carried out by BFGS (line 6).
At the end of the BFGS iteration, comparisons between the
values of pre and post scoring function fs are performed
by MetropolisAccept. If the result is accepted, a new BFGS
iteration is executed for a finer search with a more precise
step stride (line 8); otherwise, a new ILSGO iteration will be
started. After the second iteration of BFGS, the result energy
and Cons are compared with the members of the output queue
with a maximum length of 20 that defined by Vina. The Cons
with 20 lowest energy are inserted into the queue (line 10).

The BFGS method is shown in Algorithm 2, which is
divided into two modules, namely, the linear search module
Armijo–Goldstein (AG) and Hessian matrix updating module.
The search direction d could be obtained by Hessian matrix
updating (line 14), while the search step α could be acquired
by the linear search (line 11). The searching loop can be
early stopped when the gradient stops declining (line 12 and
line 13). To calculate the initial value of the objective function
f (lines 4–6), which is the sum of the intermolecular energy
and the intramolecular energy, and its derivative g (line 7),
Vina uses a new data structure, COORD, to record all the
absolute coordinates of each atom in the ligand. It is easy
to understand that COORD can be derived from Con of a
given ligand (line 3). Furthermore, another data structure is
also constructed, XK, to record all the coordinates of each
atom in the docking box. Since the different ligands own
different docking boxes on the receptor, XK could be acquired
by performing coordinate transformations on COORD.

The linear search module AG is used for finding the search
step, shown in Algorithm 3. The AG method minimizes the
search interval by iteratively evaluating the objective function
(energyinter + energyintra) until the optimal step size is found
in the descending direction.

B. Parallelism Levels of Vina Algorithm

As we discussed in the previous section, the Vina algorithm
is implemented by four-layer loops shown in Fig. 2. The first
layer (exhaustiveness level) generates multiple initial points
independently (line 1 of Algorithm 1), while the second-layer
(global searching level or GS in short) loop (line 3–line 13
of Algorithm 1) performs global optimization search based

Algorithm 3 Armijo–Goldstein

Fig. 2. Four-layer loops structure of Vina.

on the given initial point assigned by line 2 in Algorithm 1.
Besides, the third-layer (local searching level or LS in short)
loop realizes a local optimization search based on a specific
ligand Con by BFGS (Algorithm 2), and the fourth-layer (AG
level) loop performs a linear search for the searching step
determination (Algorithm 3). The built-in mechanism of Vina
supports the parallelization of the first layer (exhaustiveness
level) by the Boost Library [8]. Due to the independency of
the search progress of each initial Con for a given ligand
molecule, multiple search threads with corresponding initial
Cons could be assigned to different cores in a multicore
architecture. Unfortunately, the iterative and irregular nature of
the inner three-layer loops, namely, the GS level, LS level, and
AG level, make them hard, if not impossible, to be executed
concurrently. As we can conclude, the parallelisms of Vina can
be divided into three levels, similar to the analysis in [17].

1) High-Level Parallelism: Parallelizing the initial point
evaluations on different computing units, which is the
exhaustiveness level in Fig. 2.

2) Mid-Level Parallelism: Parallelizing Algorithms 1–3,
which includes GS, LS, and AG levels in Fig. 2.

3) Low-Level Parallelism: Parallelizing the basic modular
operations in Armijo–Goldstein (AG) level and LS level
of Fig. 2, which includes the four modules in AG level,
POT2Coords module, two energy calculation modules
(inter and intra), derivation module, and the Hessian
matrix updating module (Hupdate) in the LS level.

Although HLP is a built-in feature of Vina, while MLP
is hard to be implemented in a hardware architecture, LLP
still could be exploited by a hardware-based accelerator.
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As we can find in Fig. 2, modules of POT2Coords (line 5 in
Algorithm 3), intermolecular and intramolecular energy cal-
culations (lines 6 and 7 in Algorithm 3), derivation (line 9 in
Algorithm 3), and Hupdate (line 14 in Algorithm 2) could be
implemented in a pipelined manner to accelerate the comput-
ing throughput. Moreover, intermolecular and intramolecular
energy calculations are independent of each other; therefore,
these two modules could also be calculated in parallel.

C. AutoDock Vina and AutoDock4

The key difference between AutoDock 4 (AD4) and
AutoDock Vina (Vina) is the searching algorithm. AD4 uses
the Lamarckian Genetic Algorithm (LGA) as the global
method to generate new entities (i.e., different Cons of the
ligand) and selects the stronger ones from the entire population
that survive through generations. In addition, LGA is also
an LS method that performs an adaptive-iterative process to
minimize the energy of randomly chosen entities [29]. Due to
the independencies in this process, it is possible for the accel-
erator developers to exploit this inherent parallelism to speed
up the searching. For example, in the FPGA implementation
of [28], a three-stage pipeline architecture was proposed to
execute the genetic algorithm, ligand position calculation, and
energy evaluations concurrently, while in the newer study [29],
the authors proposed a more aggressive parallel scheme that
adopts nine independent LS hardware modules to accelerate
the searching process.

Vina, on the other hand, utilizes a totally different searching
method, in which the global searching process is performed
by a variant of SA algorithm, while a quasi-Newton method
(i.e., BFGS) is used for local searching. Vina names this
combined global and local searching method as ILSGO.
Because of the refined score function and the ILSGO searching
method, Vina significantly outperforms AD4 in both docking
speed (up to 62× in a single thread scenario) and docking
accuracy [3]. However, compared to the LGA in AD4, ILSGO
is an irregular and iterative process. Instead of local searching
the intramolecular and intermolecular energy of the subset
(because each entity, i.e., a Con of the ligand, in the subset
is independent of each other, it is possible to perform local
searches of these entities in parallel) of a genetic population,
an ILSGO iteration only starts from a ligand Con mutation of
the last LS result. This means that it is almost impossible to
execute ILSGO (including GS, LS, and AG levels in Fig. 2)
in parallel. Fortunately, after careful analysis, we found that
there is still fine-grained, or low-level, parallelism existing
inside BFGS and AG modules. By exploiting this LLP and an
optimized memory accessing layout, we successfully realized
an FPGA-accelerated Vina in this article.

III. PROPOSED ARCHITECTURE

A. Fixed-Point Quantization

To seek a suitable bit width with an acceptable range of
accuracies, the core process (Algorithms 1–3) of the native
Vina algorithm is modeled by MATLAB for the evaluations of
fixed-point quantization on the platform with Intel i7-12 700 K
at 3.61 GHz. To demonstrate the validity of the fixed-point
quantization, we select two small ligand molecules (“1uwc”
with 15 atoms and “1xm6” with 20 atoms) and two medium
ligand molecules (“1a30” with 31 atoms and “1r1h” with
33 atoms) from a mainstream docking dataset [22] for the
accuracy assessment. To obtain the mean error, we perform

Fig. 3. (a) Probability density functions of the Vina input data and grid values.
(b) Precalculated data stored in BRAM and probability density function of
the grid values.

Fig. 4. Error evaluation under different bit widths, in which 〈1, 32,
10〉 means that the total width is 32 with 1 bit for sign and 10 bits for
the fraction. (a) Error evaluation with fixed-point of 〈1, 32, 12〉. (b) Error
evaluation with fixed-point of 〈1, 32, 11〉. (c) Error evaluation with fixed-point
of 〈1, 32, 10〉. (d) Error evaluation with fixed-point of 〈1, 32, 9〉.

ten times of full Vina Algorithm on each of these four ligands.
Due to the interpretation nature, even for the simplest 1uwc,
it takes MATLAB about 40 h to run the ten experiments. Thus,
it is impractical and unnecessary to run more experiments
to evaluate the quantization accuracy. Moreover, the final
experimental results shown in Figs. 16 and 17 demonstrate
the reliability of our quantization choice.

Note that this article uses 〈A, B , C〉 to represent the sign
bit width, the total bit widths, and the fraction bit widths,
respectively. To find the optimal calculation bit widths, this
article adopts a stepwise approach, i.e., constantly adjusting
the bit width of computing units and memory. As shown in
Fig. 3(a), the values of Vina input data are distributed in the
range from −50 to 200 and the size of each docking box
never exceeds 128. The value distribution indicates that a 7-bit
integer width (a range of ±128) is good enough to represent all
the values used in Vina-FPGA. Any data larger than 128 will
be saturated to 128. Once the integer bit width determined,
we can evaluate the quantization errors with different frac-
tional bit widths as long as we keep the integer bit width larger
than 7. Thus, to make the programming of our MATLAB
model easier, we keep the total bit width as a constant 32 in
our experiment. It can be found from Fig. 4 that the error
rises rapidly when the bit width mapping changed from 〈1,
32, 10〉 to 〈1, 32, 9〉. Note that the energy in Fig. 4 means the
free energy after a ligand–receptor docking. Lower docking
energy normally indicates a better, i.e., more stable and
docking result. Thus, the energy differences between the
corresponding (with the same round number in the x-axis)
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Fig. 5. Relative error evaluation under different bit widths of memory and
computational units. (a) Relative error analysis with uniform bit width of
memory and computational. (b) Relative error analysis with memory while
the computing units are fixed with 〈1, 18, 10〉.

docking results, i.e., one result from the fixed-point model
(the red dot) and the other from the float-point model (the
black dot), are the absolute errors of the fixed-point model.
The absolute error or error in short can be denoted by
|Energyfixed−point − Energyfloat−point|, while the relative error
means the value of |(Energyfixed−point − Energyfloat−point)/
Energyfloat−point|. As we can find in Fig. 4(d), bigger energy
errors are caused by a 9-bit fraction representation (also the
average relative error is higher than 7.5%). Thus, the optimal
fractional bit width should be determined as 10 and the total
bit width mapping is 〈1, 18, 10〉 because we have already
determined that the optimal integer width is 7. This choice can
also be verified by the results in Fig. 5(a), in which although
integer bit widths bigger than 7 obtain lower errors, the profit
margins are almost neglectable.

The above quantization process is performed by using a
uniform bit width for the calculation unit and memory. How-
ever, memory is mainly used for the energy calculation, which
means that its precision can be further reduced to save the
precious on-FPGA memory capacity. As shown in Fig. 3(b),
the absolute values in the energy lookup tables never exceed
64. Thus, we can evaluate the quantization errors with different
fractional bit widths while keeping the integer bit width as 6.
It can be found that the error rises rapidly when the bit width
changes from 〈1, 14, 7〉 to 〈1, 13, 6〉 in Fig. 5(b). Thus, the
optimal bit width mapping for memory should be 〈1, 14, 7〉.
Therefore, these two fixed-point formats (the computing units
with 〈1, 18, 10〉 and the memory units with 〈1, 14, 7〉) are
accepted in Vina-FPGA implementation. What is more, all
calculation modules use the unified fixed-point format of 〈1,
18, 10〉, including input, output, temporary, and intermediate
data. The fixed-point format of 〈1, 14, 7〉 is only used to store
the constant values of grid energy tables in BRAM. The grid
energy tables are precalculated in the initialization stage by
the CPU and are downloaded to BRAM through the peripheral
component interconnect express (PCIe) interface. Once these
tables are downloaded to BRAM, data are only read out (and
automatically extended to the 〈1, 18, 10〉 format) by other
modules.

B. Main Architecture of Vina-FPGA

The architecture of Vina-FPGA with the above described
fixed-point format is presented in Fig. 6(a). The host CPU in a
PC performs initializing tasks before the docking search, such
as files reading, preprocessing, random number generating, and
the initial ligand Con generating. Then, CPU sends these data
to the block RAM (BRAM) in the FPGA via the PCIe inter-
face. The FPGA carries out the global search iteration (ILSGO

Fig. 6. Architecture and data flow of Vina-FPGA. (a) Architecture of Vina-
FPGA. (b) Data flow between CPU and FPGA.

or Algorithm 1), which mainly includes BFGS, Mutating, and
Metropolis criterion modules. As described in Algorithm 1,
the BFGS module is used to find the local optimal solutions,
while the Mutating module generates the initial ligand Con
for the next iterative loop of the global search, by adding a
random fluctuation to the local optimal solution found in the
previous global search loop. As we can find in Algorithm 2
(BFGS) and Algorithm 3 (AG), these two algorithms share
some basic modules, such as POT2Coords, intermolecular
and intramolecular energy computing, and derivation. Besides,
BFGS also has the Hessein matrix updating module. To boost
the hardware throughput and the timing, pipelines are widely
adopted in these basic modules in Vina-FPGA, which will
be discussed in detail in Sections III-C–III-F. What is more,
two energy calculation modules are parallelized to improve
performance. Note that there is no data sent back to CPU
during the ILSGO iteration. Vina-FPGA only returns the final
docking result in the queue of a complete ILSGO to the host
CPU via the PCIe interface. As we can see from Fig. 6(b), the
host CPU sends all data to FPGA after the initial stage and
switches to the IDLE state until one complete ILGSO search
is done by Vina-FPGA.

C. Coordinates Generation

The Cons of ligand molecules in Vina are represented by
position, orientation, and torsion (POT in short), which record
the spatial coordinates (of the molecular root), the Euler angle
transformations, and the torsion angles of the rotatable keys
of the ligand, respectively, as shown in Fig. 1. To convert POT
to atomic coordinates, Vina uses a quaternion to represent the
spatial rotation of the root node, which records the spatial
rotation of the node by the unit vector and the rotation angle
around its axis. Note that a node is a group of atoms that form
a rigid body (i.e., the relative positions of these atoms in this
node are fixed). A ligand could have multiple nodes, while the
relative positions among these nodes could be changed during
the docking process. To simplify our discussion, however,
we use only one circle to represent a node in Fig. 7. For
example, θ1 and vector v1 in Fig. 7 denote the spatial rotation
of the root node “C1.” Thus, the quaternion of “C1” could
be represented as (cos(θ/2), sin(θ/2)�v) [18]. Therefore, the
relative position of any two connected nodes, such as “C1”
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Fig. 7. Quaternions and the docking box. The quaternion of “C1” to the origin
point is determined by v1 and θ1. The docking box is utilized to calculate the
intermolecular energy.

Fig. 8. Rotation matrix and its transformation. Vector of Position’ equals
(Position + v ′ = Position + v × Rrotation).

and “C2” in Fig. 7, can be obtained during the initialization
of Vina. The rotation angle around the axis is the torsion
ψ1. Thus, the quaternion of “C2” node can be obtained by
quaternion operations [19] according to the quaternion of “C1”
(determined by v1 and θ1 in Fig. 7) and the quaternion of
“C1”–“C2” (determined by v3 and ψ1 in Fig. 7). Similarly,
the quaternion of all nodes could be calculated. Furthermore,
Vina converts the

Rotation=
⎡
⎣

1 − 2y2 − 2z2 2xy + 2wz 2xz − xwy
2xy − 2wz 1 − 2x2−2z2 2yz + 2wx
2xz + 2wy 2yz − 2wx 1 − 2x2 − 2y2

⎤
⎦

(1)

quaternion, i.e., (w, x , y, z), to a rotation matrix by (1),
where w is cos(θ/2) and (x , y, z) represents the vector
sin(θ/2)�v [18]. As shown in Fig. 8, a vector (v) from the
origin point is multiplied by the rotation matrix (Rrotation) to
get a new coordinate vector (v′) with the same vector size.
Then, a new node position (Position′) could be acquired by
adding the vector Position to the vector v′′. Therefore, each
rigid body has its own rotation matrix and starting coordinates
such as Rrotation and Position′ in Fig. 8. However, each rigid
body is a group of atoms and the relative positions of these
atoms in this rigid body are fixed, which is recorded in a
data structure named atom_coords. According to Rrotation and
origin of each rigid body and the position between each atom
(atom_coords) in a rigid body, the coordinates of each atom
could be obtained by (2). Thus, the atomic coordinates in each
node could be obtained as long as the rotation matrix (Rrotation)
and the position of this node (origin) are acquired. What is
more, because different docking boxes are used for different
receptors, Vina performs the coordinate transformation to
obtain XK for intermolecular energy module

Based on the above discussion, the process of coordinates
generation consists of three parts, which include Rrotation and
origin generation of each rigid body, coordinates calculation

Fig. 9. Pipeline architecture diagram of POT2Coords.

based (2), and XK calculation by coordinate transformation.

coord = origin + Rotation ∗ atom_coords. (2)

Thus, the POT2coords module is divided into a three-
stage module-level pipeline, as shown in Fig. 9. The
stage of origin and Rrotation calculation generates the ori-
gin and Rrotation in parallel. The origin is calculated by a
multiply–accumulate module and an adder, while a quaternion
is acquired by the “axis2q” module according to the formula
of (cos(θ/2), sin(θ/2)�v). Note that θ is scaled within −π to
π by the “scal” module and �v is acquired by the coordinate
rotation based on Rrotation. Then, quaternion multiplication is
designed to calculate the quaternion of the new node [19].
Since quaternion is a normalized vector, a normalization mod-
ule is employed before the Rrotation calculation. The “q2mat”
module is designed to obtain Rrotation according to (1). Then,
Rrotation and origin of each node will be stored in BRAM
with the size of 1 kB. The stage of coordinate generation is
realized according to (2), while the stage of the coordinate
transformation is realized by an adder and a multiplier.

D. Energy Calculations

Energy calculation modules perform the calculation of inter-
molecular energy and intramolecular energy. The intermolec-
ular energy is the algebraic sum of energy between each atom
in the ligand molecule and the receptor protein, which depends
on the coordinates (XK) of the ligand molecule in the docking
box. Similarly, the intramolecular energy is the energy between
each atom pair inside the ligand molecule, which is related to
the relative coordinates of each atom in Coords.

1) Intramolecular Energy: The intramolecular energy is the
sum of the energies produced by pairs of atoms that have
interacting forces in the ligand molecule. The force only
occurs between certain atomic types and the force is ignored
once the surface distance between these two atoms is greater
than 8 Å (Å is a unit of distance between atoms, which equals
10−10 m). Based on the atom type and distance (actually, Vina
uses the square of the distance, or r2, to index the table entry)
of different atom pairs, Vina obtains the intramolecular energy
from lookup tables. The energy of each atomic pair at different
distances is calculated in the preprocessing and stored in a
BRAM table, as shown in Fig. 10. There are 153 different
pairs of atoms that have interactive forces, whose values
are determined by the 2051-level discretized surface distance
between these two atoms. To lower the quantization error
induced by the distance remainder cut off, a compensation
term, rem × (m_datatype,int − m_datatype,int+1), is added to the
table looking up result, shown in (3). Note that

fintrai = mdatatype,int + rem

∗ (
m_datatype,int − m_datatype,int+1

)
(3)
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Fig. 10. Organization of the intramolecular energy and derivative lookup
table.

Fig. 11. Hardware implementation of intramolecular energy.

int is the discrete value, while rem is the discrete error of the
surface distance, which means that the sum of int and rem is
2051 × r2. Similarly, the energy gradient between each atom
can

gintrai = (
derdatatype,int + rem ∗ (

der_datatype,int

− der_datatype,int+1
)) ∗ �r (4)

also be obtained by a similar method and the only difference is
that the gradient calculation has its own table, which is shown
in (4). Since the gradient owns direction, Vina multiplies the
gradient by the coordinate vector between the two atoms.

This article implements the hardware of intramolecular
energy computing, as shown in Fig. 11. First, the Euclidean
distance r2 between the two atoms (coorda and coordb) is
obtained. Then, the discrete error rem can be gained by cutoff,
while int can be gotten by discretization. Based on these
parameters, the energy and derivative between the two atoms
are obtained according to (3) and (4). Meanwhile, we construct
a three-staged pipeline to improve the system throughput,
which includes the Euclidean distance r2 calculation, the
energy and gradient calculation, and the result output.

2) BRAM Remapping Strategy: The intermolecular energy
is the sum of the energies between all ligand atoms and
receptor atoms. However, the huge number of atoms in the
receptor molecule, normally a protein, makes it impossible to
calculate the energy with a reasonable time overhead

To lower the computation complexity, the intermolecular
energy calculation in Vina is implemented by trilinear inter-
polations based on the precalculated grid data from the host
CPU [20]. Note that Vina needs different energy tables for
different types of atoms, for example, a table for the carbon
atoms (C) and another table for the nitrogen atoms (N).
As shown in Fig. 12(a), Vina divides the searching space into
multiple adjacent cubes or grids, in which the intermolecu-
lar energy between an imagined atom on each vertex point

Fig. 12. Trilinear interpolation and data remapping strategy. (a) Diagram of
trilinear interpolations for intermolecular energy calculation. (b) Intermolec-
ular energy data arrangement of origin Vina. (c) Intermolecular energy data
arrangement of Vina-FPGA. Each BRAM owns independent parity index of
y and z. For example, the data in which index of z is even and index of y is
even will be mapped into BRAM1.

(i.e., C000–C111) and the receptor is precalculated and stored
in an energy table corresponding to the atom type.

Therefore, for a given atom in the ligand, point C in
Fig. 12(a), the energy of point C (E(C)) could be computed
according to E(C) = E(C1)+t×[E(C0)−E(C1)] by a linear
interpolation in which t is the normalized distance between
points C and C1. The energy at C0 and C1 could be calculated
by two other linear interpolations from C10 and C00 and C11
and C01, respectively. Similarly, the energy at C10, C00, C11,
and C01 could be derived from the precalculated energy of the
eight vertex points, C000–C111, which could be obtained from
the corresponding energy table with the same atom type to the
ligand atom, i.e., a carbon atom in Fig. 12(a).

The values of points C000–C111 could be accessed by the
address according to (5) if the docking box size is divided
into

Addr = TableBase + x + 60 ∗ (y + 60 ∗ z) (5)
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60 cubes × 60 cubes × 60 cubes (i.e., grids) and the discrete
data are organized by a 3-D index table, which is shown in
Fig. 11(b). Note that the table contains a total of 60 × 60 × 60
data, while for each index of z, there are 60 × 60 data for
different x and y values, and for each index of y, there are
60 data for different x values. For example, to obtain the
vertex values of the grid with coordinate (x = 0, y = 1, and
z = 57), shown as the blue cube in Fig. 11(a), eight data
stored at (0, 1, 57), (1, 1, 57), (0, 2, 57), (1, 2, 57), (0, 1,
58), (1, 1, 58), (0, 2, 58), and (1, 2, 58) will be accessed,
as shown in Fig. 12(b). Due to the irregular changes of ligand
molecules and limited by the two read ports of each BRAM
block, it takes at least four cycles to obtain these eight vertex
values, should all these values be stored in only one BRAM
block. To solve this problem, we utilize the characteristics of
data arrangement and map the values of the vertex points in
the grid to four separate BRAM blocks, noted as BRAM1,2,3,4,
which are shown in Fig. 12(c). It is worth mentioning that each
BRAM owns independent parity of the index of y and z. For
example, BRAM1 will be accessed if the index of z and y is
even, while BRAM2 will be accessed if the index of z is even
and the index of y is odd. Therefore, the eight vertex data
used in the trilinear interpolations will be evenly distributed
in the four BRAM1, 2, 3, and 4 blocks to support one-cycle
accessing

3) Intermolecular Energy: Based on the above discussion,
the trilinear interpolation formula is shown in (6). Note that
f 000– f 111 represent the grid

finter j = (1 − xd)(1 − yd)(1 − zd) f000+xd(1 − yd)(1−zd) f100

+ (1 − xd)(1 − yd)zd f001+xd(1 − yd)zd f101

+ (1 − xd)yd(1 − zd) f010+xd yd(1 − zd) f110

+ (1 − xd)yd zd f011+xd yd zd f111 (6)

vertex values, while the coordinate (xd , yd , zd) represents
the normalized positions of the target ligand atom located
in the grid. As we can find, 24 multipliers and seven adders
are required to complete a trilinear interpolation calculation,
which leads to longer critical timing paths and degrades the
system performance. Thus, we convert (6) to (7) by extracting
common factors,

finter j = [ f000(1 − xd)+ f100xd](1 − yd)(1 − zd)

+ [ f001(1 − xd)+ f101xd](1 − yd)zd

+ [ f010(1 − xd)+ f110xd]yd(1 − zd)

+ [ f011(1 − xd)+ f111xd]yd zd (7)

which needs 16 multipliers and seven adders to calculate
f _inter j without changing the calculation result.

The implementation of intermolecular energy module is
shown in Fig. 13. Similarly, we utilize a three-stage pipeline
to improve the system throughput, which includes the grid
position determination, the energy and gradient calculation,
and the result output.

E. Derivation Calculation

The intermolecular and intramolecular energy calculation
modules not only output the energy inside the ligand and
energy between the ligand and the receptor but also obtain
the energy gradient of each ligand atom in directions of
3-D coordinates x , y, and z. The derivation calculation module
converts the energy gradient in the direction of x , y, and z back

Fig. 13. Hardware implementation of intermolecular energy.

Fig. 14. Hardware implementation of derivation calculation.

to the gradient in POT, which means that it is a reverse process
of POT2Coords module and requires some parameters from
this module. Unfortunately, the derivation module obtains the
gradient through the chain derivation rule, which brings huge
challenges to the pipeline implementation. Hence, we divide
the derivation calculation module into four levels (derivation
calculation of each node based on the derivation of each
atom inside the node, POT derivative calculations), which are
executed in serial due to the data dependencies. However,
we implement pipelines inside each level, which is similar
to the Coords generation module and shown in Fig. 14.
Due to each node owning multiple atoms as discussed in
Section III-C, the derivation of each node will be calculated
and stored in the memory (position_tmp and orien_tmp) with
the size of 256 B in the first level. What is more, levels of 2–4
are the process of dimensionality reduction, which calculates
the derivation of POT based on the derivations of each node
in level 1. Unfortunately, the derivation of orientation relies
on the derivation of position, while the derivation of torsion
depends on the derivation of orientation, which means that
we can only calculate derivations of POT in serial. Besides,
the input of coords, origin, origin 1, origin 2, and axis is from
the POT2Coords module, while minus_force is the gradient of
each atom in the ligand, which is from the energy calculation
modules. In the first level, a product module is introduced to
calculate the cross product of vector with derivation of each
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atom (minus_force) and the relative coordinate vector (coords–
origin) which requires three-stage pipelines in level 1. Besides,
adder and access to memory require two additional pipeline
stages, which means that level 1 is a five-stage pipeline.
Similarly, levels 2 and 4 include read memory, calculation
(adder or multiply–accumulate), and write memory, which
requires a three-level pipeline. What is more, level 3 owns
one more serial adder than level 1 so that it requires a six-
stage pipeline to improve timing.

F. Hessian Matrix Update

The Hessian matrix is used to quantify the local curvature of
the objective function, which is the energy between the ligand
and the receptor in our work. Thus, the Hessian matrix needs
to be updated after each iteration according to (8). Note that k

hk+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

hk +
(

yT
k hk yk

dT
k yk

+α
)

∗ dkdT
k −hk ykdT

k −dk yT
k hk

dT
k yk

,

dT
k yk〉0

hk,

dT
k yk ≤0

(8)

h∗
0 = αdT

0 y0

yT
0 y0

∗ h0 (9)

is the BFGS iteration number and the initial value is 0. The
N-dimensional (N depends on the dimensions of POT,
i.e., position, orientation, and torsion) Hessian matrix is
represented as h, while d represents the search direction,
which is acquired by −(hk ∗ gT

k )
T

. α is the search step,
while y is the gradient change rate, which is acquired by
(gk+1 − gk/(k + 1)− k) (g is the gradient from the derivation
calculation module). Specifically, the initial Hessian matrix
(h∗

0) is corrected in Vina [3] by (9)

hk+1 = hk ∗
⎧⎨
⎩
αdT

k

yT
k yk

, k = 0

1, k �= 0

+ dk dT
k ∗
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α +

⎧⎪⎪⎪⎨
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αyT
k hk yk

yT
k yk

, k = 0

yT
k hk yk

dT
k yk

, k〉0
dT

k yk
, dT

k yk〉0
0, dT

k yk ≤0

− (
hk yk dT

k + dk yT
k hk

) ∗

⎧⎪⎪⎨
⎪⎪⎩

α

yT
k yk

, dT
k yk〉0

1

dT
k yk

, dT
k yk ≤ 0

(10)

and h0 is the identity matrix, which could quantify the local
curvature of the objective function at the initial point to
improve the accuracy. Thus, hk+1 consists of three matrices
[hk , d∗

k dT
k , (h∗

k y∗
k dT

k + d∗
k yT ∗

k hk)] and their coefficients, which
is shown in (10) based on (8) and (9).

Based on the above formula, we implemented the design
of Hessian matrix update and the input consists of vectors
(d and y), Hessian matrix (h), search step α, and the first
update signal (k = 0), which is shown in Fig. 15. Two
serial multiply–accumulate modules are designed to obtain the

Fig. 15. Hardware implementation of Hessian matrix updating.

denominator of all factors (dT y and yT y) in (10). Besides,
the coefficient of the term dkdT

k is very complex. Thus,
a parallel multiply–accumulate module is designed to get hk yk
and a serial multiply–accumulate module is designed to get
yT

k hk yk. Meanwhile, the matrix of hkykdT
k will be computed

based on the result of hk yk and the matrix of dkdT
k will be

acquired with a multiplier. However, since the symmetry of the
Hessian matrix, only h∗y∗dT will be computed and stored in
the local memory to save memory resources [(hydT)T equals
dyT hT and dyT hT equals dyT h]. Thus, (hydT + dyT h) will be
accomplished in the local memory by transpose and addition
of matrix according to (h∗y∗dT )T . Ultimately, hk+1 will be
generated by three Muxs based on the above results.

IV. EXPERIMENTAL AND DISCUSSION

A. Resource Utilization

The proposed design is coded in Verilog HDL and synthe-
sized by Vivado on the Ultrascale FPGA (xcku060-ffva1156-
2-i) board with the clock frequency of 150 MHz. Kintex
Ultrascale FPGA has enough BRAM capacity to store all the
grid energy data used for the energy computing, which guar-
antees that the eight vertex values used for the intermolecular
energy computing could be obtained in just one cycle. Also,
its PCIe interface can be easily used for the data exchange
between the CPU and the accelerator. Moreover, the 20-nm
FinFET technology used in Kintex Ultrascale makes the power
consumption of the FPGA much lower. Table I shows the
resource utilization of each module in the system. The PCIe
module is generated by Vivado IP Tool for communications
with the host CPU. Due to the lookup tables needed in the
calculation, intermolecular and intramolecular energy calcu-
lations consume significant capacity of BRAM. The Coords
Queue & Sorting module stores and sorts the calculation
results from each BFGS and only the final results are sent
back to the host CPU when ILGSO is completed. Although
a hardware-based sorting mechanism consumes plenty of
resources, communications between the FPGA and the host
CPU can be significantly reduced by this module. Moreover,
this module could be shared by multiple computing lanes for
high-level parallelism in the future.

High resource utilization results in huge challenges in
routing, not to mention using almost 100% BRAM runs out
of wiring resources under the default strategy, which makes it
difficult to increase the system frequency. Therefore, we adopt
the Vivado’s built-in Floorplanning tool, making the energy
calculation module close to the BRAM blocks to optimize
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TABLE I

RESOURCE UTILIZATION OF VINA-FPGA

the critical path. In addition, we change the implementa-
tion strategy to Congestion_SpreadLogic_high, and it relieves
the congestion between the energy calculation and related
modules.

B. Validation

The output energy between the ligand and the receptor as
well as the root-mean-square deviation (RMSD) between the
output ligand Con and the X-ray measurements (the ground
truth) are usually used to verify the docking results [21].
We validate Vina-FPGA using a mainstream MD dataset
consisting of 140 molecular pairs (ligands and receptors) [22].
Due to the usage of fixed point, the calculation process
of the original Vina and Vina-FPGA cannot be guaranteed
to be completely consistent even when they use the same
random seeds. Similarly, due to the stochastic nature of ILSGO
methods, each ILSGO run can have different endpoint results
for either software or hardware implementations. To account
for this variation, we run Vina and Vina-FPGA ten times and
compare the RMSDs and energy distributions [17]. Besides,
the parameter of exhaustiveness (the number of initial values
of the SA) in ILSGO (line 1 in Algorithm1) has a great
influence on the output energy and RMSD, which has a
default value of 8 in Vina. As Trott et al. [3] had claimed
that users should increase the exhaustiveness value for more
stable results, we conduct our experiments with exhaustiveness
of 16 and 32. Thus, the total number of global searches
in our research is 10 runs × 32 (or 16, depending on
the exhaustiveness selections) × 140 pairs = 44 800. Com-
pared to the studies in [28] and [29], which only conducted
100 runs × 60 complexes = 6000 [28] and 100 runs × 5 com-
plexes = 500 [29] global searches, our investigations are more
general and convincing. Fig. 16(a) shows the output energy
differences between two rounds of Vina docking with different
random seeds under the exhaustiveness of 16. Each red dot in
Fig. 16(a) indicates the energy output for a given ligand and
receptor complex, while the x and y coordinates of the dot
represent the output values from these two-round executions.
Ideally, the output energy from these two different rounds of
Vina should be the same and located on the diagonal. However,
it can be found that although most of the energy outputs are
closely located at the diagonal, there are still some points
that relatively deviated from the diagonal. This is because
of the stochastic nature of Vina algorithm, as we explained
in Section II. Fig. 16(b) presents the corresponding variations
between Vina and the proposed Vina-FPGA. As we can notice,
the error and variance are close between Fig. 16(a) and (b).
To further reduce the dispersion, we performed the same

Fig. 16. Output docking energy comparisons of Vina-FPGA and Vina. There
are considerable variations even between two rounds of executions of Vina
due to the stochastic nature of the algorithm, shown in (a) and (c) with
exhaustiveness of 16 and 32. Similar variations exist between Vina-FPGA
and Vina with different exhaustiveness. However, the error variances and
average relative errors are close to those of different Vina executions, shown
in (b) and (d).

experiment with the exhaustiveness of 32. Fig. 16(c) shows the
output energy differences between two rounds of Vina docking
with different random seeds under the exhaustiveness of 32,
while Fig. 16(d) shows the corresponding variations between
Vina and proposed Vina-FPGA. Compared to the results from
exhaustiveness of 16, the dispersion of Fig. 16(c) and (d) is
narrowed and the deviation of most values is within ±0.5,
which is the blue area in Fig. 16.

The RMSD distributions (RMSD describes the similarity
between the docking result and the X-ray measurement of
the ligand Con) of the final Vina output results of the 1400
ligand–receptor complexes (140 × 10 rounds) with exhaustive-
ness of 16 is shown in Fig. 17(a). Similarly, Fig. 17(b) shows
the RMSD distributions of the final output from Vina-FPGA
under exhaustiveness of 16 whose u and σ have a slight
deviation from Fig. 17(a) due to the quantization and sto-
chastics error. What is more, the proportions of RMSD less
than 2 Å are 53.6% and 46.7% in all docking results of
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TABLE II

PERFORMANCE AND ENERGY COMPARISON OF VINA, VINA-GPU, AND VINA-FPGA

Fig. 17. Comparisons of RMSD distributions from Vina and Vina-FPGA.
Due to the stochastic nature of the algorithm, we perform the same experiment
ten rounds and there are a slight deviation of u and σ with the exhaustiveness
of 16, shown in (a) and (b). To further reduce the stochastic error, we repeated
the same experiment when the exhaustiveness is 32. It can be found that u and
σ are declined compared to the exhaustiveness of 16 and u and σ are very
close between Vina and Vina-FPGA, which is shown in (c) and (d). (a) RMSD
with Ex16 of Vina. (b) RMSD with Ex16 of Vina-FPGA. (c) RMSD with Ex32
of Vina. (d) RMSD with Ex32 of Vina-FPGA.

Vina and Vina-FPGA, respectively. Normally, RMSD less
than 2 Å is a reliable criterion for docking results. Similarly,
we reconstructed the above experiment under the condition of
exhaustiveness being 32 to further reduce the stochastic error,
which is shown in Fig. 17(c) and (d). It can be found that
u and σ have a slight decrease compared with the results
with exhaustiveness of 16. Besides, u and σ of Vina and
Vina-FPGA are very close when exhaustiveness is 32. The
proportions of RMSD less than 2 Å, in this case, are 55.2%
and 52.2% in all docking results of Vina and Vina-FPGA,
respectively.

C. Performance and Energy Consumption

Performance is evaluated by comparing the total MD
computing time of the original Vina running on the Intel
i7-12 700 K at 3.61 GHz, Vina-GPU [30] on a NVIDIA

Fig. 18. Acceleration ratio of Vina-FPGA for different ligands.

RTX 3090 GPU [32], and Vina-FPGA at 150 MHz. The results
are shown in Table II. The time of Vina is mainly composed
of initialization and ILGSO. Initialization of Vina includes
ligand file reading and data preprocessing. The time used by
Vina-FPGA consists of initialization, PCIe communication,
and ILGSO. The data conversion time of double-precision
floating-point data to fixed-point data is counted into the
initialization of Vina-FPGA, which is to prepare the necessary
data of ILGSO for PCIe communication. Besides, the PCIe
communication time of Vina-FPGA is shown in Table II and
we only send data to BRAM once for a given ligand–receptor
pair. Note that the time is the average docking time per ligand
in our test bench. The average CPU time for a ligand docking
(total time) is 182.281 s, while that of Vina-FPGA is merely
48.402 s with the exhaustiveness of 32. The average speedup
of Vina-FPGA is 3.7× and the maximum speedup is 6.9×
when Natom is 31 and Ntorsion is 4, which is shown in Fig. 18.
Although Vina-GPU achieves an average 20× speedup than
CPU and the average GPU time for a ligand docking (total
time) is 9.2 s, it benefits from the reduction of the iterative
loops in each global ILSGO search. By dramatically reducing
the search depths, or iteration times, of each individual ILSGO
loop to only 22, Vina-GPU executes 1000 independent such
depth-reduced ILSGO loops (threads) simultaneously. In this
case, the total number of ligand Cons being globally searched
is only 22 × 1000. According to the observation from [30],
Vina-GPU can achieve a similar docking accuracy while
significantly reducing the docking time due to the shortened
search depth. However, limited by the hardware resources, it is
impossible for the CPU version or Vina-FPGA to execute such
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huge amount individual ILSGO searching threads in parallel.
In contrast, either the CPU version or Vina-FPGA needs to
execute each ILSGO iteration for 22 365 times to guarantee
the searching accuracy, under limited ILSGO iterations (or
exhaustiveness, 32 in our case). Obviously, the concurrently
executed depth-reduced ILSGO loops in Vina-GPU could be
much faster than the execution of a much deeper ILSGO loop.

The power (static and dynamic power of the FPGA chip)
of Vina-FPGA, evaluated by Xilinx XPower Analyzer [34],
is reduced by 90% compared to CPU, which is measured by
Intel Power Gadget [23]. What is more, we also measured
the power consumption of the entire FPGA board with an
electricity meter (model number DL333501C [31]), which
shows that the overall power of the FPGA board is 12.84 W
when Vina-FPGA is running. To have a fair comparison,
we only list the total energy used to complete ILGSO (core
power × ILSGO time), which is also the most time-consuming
part, in CPU, Vina-GPU [30], and Vina-FPGA. The total
energy consumption of Vina-FPGA is reduced by 39× com-
pared to the CPU version. To compare the performance and
energy consumption with Vina-GPU [30], we measured the
average docking time and power used by Vina-GPU on a
NVIDIA RTX 3090 GPU [32]. The power of the GPU Core
and the board (including the core) are measured by the tool of
GPU-Z [33]. As we can find in Table II, although Vina-FPGA
is much slower than Vina-GPU, the energy consumed by Vina-
GPU is still 2.2× of Vina-FPGA. Fortunately, MD software is
not a real-time application. Even a look-like trivial speedup of
the docking process is still meaningful, considering the huge
workload in virtual screening. The lower power consumption
of Vina-FPGA could be a potential advantage in a data
center scenario with the large scale of drug virtual screening.
Moreover, by deploying Vina-FPGA (an enhanced version)
on an FPGA cluster that contains multiple FPGA chips, it is
highly possible to obtain a similar or even faster accelerating
ratio compared to Vina-GPU.

D. Comparison of Vina-FPGA and FPGA-Accelerated AD4

Although it is unfair to compare the accelerators under
different computation process, we still compare our work to
two FPGA accelerators for AD4 [28], [29], which is shown
in Table III.

As we discussed earlier, the key difference between AD4
and Vina is the searching algorithm. AD4 uses the LGA as
the global search method and the LS method [29]. Due to the
independencies in this process, it is possible for the accelerator
developers to exploit this inherent parallelism to speed up the
searching, for example, the three-stage pipeline architecture in
[28] and the nine independent LS hardware modules in [29].

However, ILSGO used by Vina is an irregular and iterative
process. An ILSGO iteration only starts from a ligand Con
mutation of the last LS result. This means that it is almost
impossible to execute ILSGO (including GS, LS, and AG
levels in Fig. 2) in parallel. Thus, Vina-FPGA exploits the
LLP inside BFGS and AG modules.

The main innovations of our work on FPGA implementa-
tions of AD4 are listed as follows.

1) Vina-FPGA Further Accelerates the AD4: To the best of
our knowledge, Vina-FPGA is the first reported FPGA
accelerator with an effective speedup (average 3.7×
for 140 ligands) for Vina. This acceleration ratio is
higher than the average 2.7× speedup (for only five

ligands) of the OpenCL-based FPGA implementation of
AD4 [29], which even uses an aggressive parallel archi-
tecture. Compared to the average 23× AD4 acceleration
(for 60 ligands) in [28], it seems that the speedup of
Vina-FPGA is trivial. However, if we consider the fact
that Vina achieves averagely 62× faster than AD4 with
higher accuracy on a single CPU, the absolute docking
speed of our work is still almost 10× faster than [28].

2) Architecture That Exploits Low-Level Parallelism:
Because of the dependencies among different stages in
the ILSGO loop, the architecture of Vina-FPGA must
look for parallelism in the lower level. To improve the
throughput of the lower level computing modules, dif-
ferent pipeline structures for the modules are proposed.
Moreover, because the two energy evaluations (intra
and inter) are independent to each other, Vina-FPGA
executes these two modules in parallel.

3) More Efficient Memory Usage: The AD4 accelera-
tor [28] consumes 40-MB off-FPGA SRAM to store
the initialization data, the grid energy tables used for
energy evaluations, and docking results. Vina-FPGA
only consumes 32-Mb BRAM that benefited from its
14-bit quantization. Also, a new method that remaps the
layout of the energy table data is proposed to guarantee
one-cycle access to the data used in intermolecular
energy computing.

4) Extension Possibilities: The works of [28] and [29]
allowed data exchange with the SRAMs via simple
interfaces. In our design, CPU and FPGA are connected
by PCIe, and both of them have their own memory
space. This architecture is also suitable for a future
cluster design.

V. RELATED WORK

The accelerator of MD is a hot issue in academia and
industry, mainly focusing on three levels: CPU, GPU, and
FPGA.

CPU: The CPU-based acceleration of MD focuses on
improvements to the algorithms. Handoko et al. [11] proposed
QuickVina, which reduced the number of iterative searches
by adding specific constraints to improve the operation speed.
Alhossary et al. [12] presented a scheme to further reduce the
number of iterative searches. Hassan et al. [13] proposed a
method to eliminate similar molecular Cons to reduce the
number of searches. Apart from that, as the original Vina
can run on multiple CPUs, VirtualFlow [14] greatly reduced
computing time by 160 000 CPUs. However, this resource is
almost unaffordable for most researchers, not to mention its
huge power consumption.

GPU: Imre et al. [24] optimized AutoDock4 by graph-
ics processing unit (GPU). Solis-Vasquez et al. [25] utilized
OpenCL to implement GPU deployment of AutoDock4 on
GTX260 and Titan [26]. Solis-Vasquez et al. [27] proposed
the ADADELTA algorithm based on the search algorithm of
AutoDock4 and deployed it on GPU using OpenCL. Viking is
a previous study in Vina GPU acceleration [15]. Unfortunately,
due to the uniqueness of Vina in terms of iteration, Viking
takes more calculation time on GPU. Tang et al. [30] opti-
mized AutoDock Vina by reducing search depth and increasing
the number of initial search points, which achieves significant
acceleration. However, the acceleration effect only comes from
sufficient hardware resources rather than achieving accelera-
tion under a single computing path.
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TABLE III

COMPARING AD4 FPGA IMPLEMENTATIONS WITH OUR WORK

FPGA: Imre et al. [28] implemented a hardware
accelerator for AutoDock4 based on a field-
programmable gate array (FPGA) through pipeline design.
Solis-Vasquez et al. [29] employed OpenCL to implement
the FPGA deployment of AutoDock4.

Due to the parallel nature of the AutoDock4 algorithm,
the acceleration for the AutoDock series of MD software
is mainly concentrated on AutoDock4. However, because
of the irregularity and long iteration of the algorithm, the
acceleration research on Vina is still mainly at the algorithm
level. This article implements the hardware accelerator of Vina
for the first time, and the proposed architecture of our system
performs up to 6.9× faster than a state-of-the-art CPU does
and has an average 37× higher energy efficiency with the same
MD benchmarks.

VI. CONCLUSION

This article presents the first FPGA-based AutoDock Vina
implementation called Vina-FPGA. It is the first to accelerate
Vina by FPGA with fixed-point quantization. To accomplish
this task, we first analyzed the parallel levels of the Vina
algorithm, i.e., LLP, MLP, and HLP. Although Vina supports
HLP by the Boost Library, MLP is hard to be exploited due to
the irregularity and iterations in the algorithm. Thus, we realize
a hardware-accelerated AutoDock Vina or Vina-FPGA, by
utilizing the LLP of Vina in this article. Various module-level
pipelines are adopted in Vina-FPGA to improve the system
throughput. To improve memory access speed, a novel data
mapping strategy is proposed to achieve equivalent BRAM
multiport access. The implementation of Vina-FPGA achieves
up to 6.9× (average 3.7×) speedup and similar docking
accuracies compared to a single-core implementation of a
state-of-the-art CPU. The average energy consumed by Vina-
FPGA for a ligand–receptor docking is only 2.5% of the
CPU implementation and 45% of Vina-GPU. In the further
work, we would like to extend our work into a cluster design,
in which multiple lanes of Vina-FPGA will be deployed onto
multiple FPGA boards that are connected by a high-speed
Ethernet switch.
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