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Abstract—AutoDock Vina (Vina) stands out among numerous
molecular docking tools due to its precision and comparatively
high speed, playing a key role in the drug discovery process.
Hardware acceleration of Vina on FPGA platforms offers a
high energy-efficiency approach to speed up the docking pro-
cess. However, previous FPGA-based Vina accelerators exhibit
several shortcomings: 1) Simple uniform quantization results in
inevitable accuracy drop; 2) Due to Vina’s complex computing
process, the evaluation and optimization phase for hardware
design becomes extended; 3) The iterative computations in Vina
constrain the potential for further parallelization. 4) The system’s
scalability is limited by its unwieldy architecture. To address the
above challenges, we propose Vina-FPGA-cluster, a multi-FPGA-
based molecular docking tool enabling high-accuracy and multi-
level parallel Vina acceleration. Standing upon the shoulders
of Vina-FPGA, we first adapt hybrid fixed-point quantization
to minimize accuracy loss. We then propose a SystemC-based
model, accelerating the hardware accelerator architecture design
evaluation. Next, we propose a novel bidirectional AG module for
data-level parallelism. Finally, we optimize the system architec-
ture for scalable deployment on multiple Xilinx ZCU104 boards,
achieving task-level parallelism. Vina-FPGA-cluster is tested on
three representative molecular docking datasets. The experiment
results indicate that in the context of RMSD (for successful
docking outcomes with metrics below 2Å), Vina-FPGA-cluster
shows a mere 0.2% lose. Relative to CPU and Vina-FPGA, Vina-
FPGA-cluster achieves 27.33ˆ and 7.26ˆ speedup, respectively.
Notably, Vina-FPGA-cluster is able to deliver the 1.38ˆ speedup
as GPU implementation (Vina-GPU), with just the 28.99% power
consumption.

Index Terms—AutoDock Vina (Vina), hardware acceler-
ator, field-programmable gate array (FPGA) cluster, soft-
ware/hardware (SW/HW) co-design.

I. INTRODUCTION

MOLECULAR docking (MD) plays a key role in the cur-
rent drug discovery process for fast screening candidate

drug molecules with computer algorithms [1], [2]. AutoDock
Vina (Vina) [3] stands out among numerous MD tools due
to its precision and comparatively high speed [4], [5]. This
can be attributed to significant upgrades over its predecessor,
AutoDock4 (AD4) [6], Vina introduces great advancements
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in its scoring function and search algorithm, contributing
to a remarkable accuracy. Furthermore, Vina’s computational
framework is optimized to harness the parallelism offered by
multi-core CPUs, which reduces the computational time cost
for MD.

However, Vina still requires significant computational time.
This is due to Vina exhibiting irregular behaviors in the form
of nested loops with changing upper bounds and differing
control flows [7]. Hence, Some researchers focus on the
Vina acceleration problem. On the CPU side, QuickVina2 [8]
and QuickVina-W [9] accelerate the computation through
algorithm optimization. Compared to hardware acceleration,
the performance improvement brought by algorithms is still
limited. VirtualFlow [10] stands as an open-source platform
dedicated to drug design, incorporating Vina for virtual screen-
ing. Through the utilization of 160,000 CPUs, it considerably
truncates the time required for extensive screening. However,
the massive server resources and cost overhead are unafford-
able for general molecular docking groups. On the GPU side,
Vina-GPU [11] represents the first GPU implementation of
Vina, boasting an impressive average speed-up of 21ˆ. Lever-
aging the GPU’s multi-core capabilities, it facilitates parallel
computations over various initial states, consequently mini-
mizing iteration counts for individual operations and resulting
in this acceleration [12]. Vina-GPU2 [13] is an advanced
GPU implementation that incorporates the enhanced Vina
algorithms, QuickVina2 [14] and QuickVina-W [9], aiming
for futher GPU acceleration in virtual screening applications.

Although achieving gains in Vina’s parallel acceleration
on mainstream computing platforms such as CPU/GPU, they
meanwhile introduce significant energy consumption [15].
The FPGA-based accelerator is considered one of the most
promising directions, since FPGAs provide low-power and
high-energy efficiency and can be reprogrammed to accelerate
different applications [16]. Moreover, FPGAs are potential
solutions to accelerate MD process, which has been proven in
previous MD tools [17], [18]. Motivated by such advantages,
we have proposed Vina-FPGA [19], which is the first FPGA-
based hardware acceleration of Vina and achieves average
3.7ˆ speedup. Vina-FPGA leverages the uniform quantization
to reduce the computational load and employs parallel pro-
cessing strategies, such as in-module pipeline designs (intra-
module level pipeline parallelism) and parallelized intra and
inter-molecule energy computing (inter-module level paral-
lelism), Which effectively balance precision and performance.
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However, Vina-FPGA still has room for improvements: (1)
The sensitivity of Vina to data bit-width alterations compro-
mises its accuracy when using previous uniform quantization
methods; (2) The Vina workflow encompasses diverse complex
computations, which hinders rapid evaluation and optimization
for hardware design; (3) The multi-level iterative computations
in Vina constrain the potential for further parallelism design;
(4) Vina-FPGA’s extensive on-chip memory resource usage
and the resource consumption intensive sorting module limit
its scalability.

To address these challenges and achieve higher performance
with energy efficiency, we propose the Vina-FPGA-cluster, an
FPGA-cluster-based molecular docking tool for Vina. First,
we use a hybrid quantization based on the data distribution
of Vina’s computational modules, effectively minimizing the
impact of fixed-point arithmetic on accuracy. Then, we develop
a SystemC-based hardware model, which, in conjunction with
QEMU, facilitates a software/hardware (SW/HW) co-design
approach to expedite the hardware accelerator design process.
In hardware design, by analyzing Vina’s bottlenecks, we
propose a novel architecture that facilitates the parallelism of
Vina’s innermost Armijo-Goldstein Line Search (AG) algo-
rithm to achieve data-level parallelism. Finally, we deploy a
cluster architecture across multiple FPGAs to achieve task-
level parallel computation for Vina. Our main contributions
are as follows:

‚ Hybrid Fixed-point Quantization: A novel approach
to Vina’s computations, this method involves mixed
quantization of various variables within the computation
process. When compared to the original Vina computation
(32bit floating-point), there’s a mere 0.2% reduction in
RMSD success ratio.

‚ A SystemC-based SW/HW Co-Design Model: De-
signed specifically for the hardware acceleration of the
Vina algorithm, this SystemC-based model enables swift
theoretical performance analysis and facilitates faster
design iterations and deployment processes.

‚ A Novel Parallel AG Module Design: Proposing a
new architecture for the iterative Armijo-Goldstein Line
Search algorithm, namely Bidirectional-AG, which par-
allelizes the processes. The design obtains 3.90ˆ perfor-
mance enhancement compared to Vina-FPGA, while only
demanding less than twice the hardware resources.

‚ FPGA-cluster Based Vina Acceleration: By leveraging
parallel computation across 4 FPGAs, Vina-FPGA-cluster
achieves speedups of 27.33ˆ and 7.26ˆ when compared
to CPU and Vina-FPGA, respectively. Notably, Vina-
FPGA-cluster is able to deliver the 1.38ˆ performance
as GPU, with just the 28.99% power consumption. More-
over, the design of Vina-FPGA-cluster can be expanded
to systems comprising over 64 or even more FPGA units.
To the best of our knowledge, Vina-FPGA-cluster is
the first time to represent the multi-FPGA acceleration
specifically tailored for Vina.

The rest of the paper is organized as follows: Section II
introduces the background and motivations; Section III de-
scribes the design methods of Vina-FPGA-cluster; Section IV
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Fig. 1: (a) Schematic illustration of docking a small molecule ligand to
a protein target forming a protein-ligand complex [21]. (b) The ligand’s
conformation variables include Position (Pos), Orientation (Ori), and Torsion
(Tor).

describes the architecture of Vina-FPGA-cluster; Section V
describes the experiments include implementation details and
results; Section VI concludes the paper.

II. BACKGROUND AND MOTIVATIONS

A. Molecular Docking

Molecular docking (MD) is an essential process in scientific
drug discovery to predict the binding mode and affinity of a
small molecule (ligand) to a target protein [20]. This method
can help to identify potential drug candidates by virtually
screening large chemical libraries and selecting compounds
that are most likely to bind to the target protein with high
affinity. As shown in Fig. 1(a), a simple MD process is
depicted, where the ligand within a preset docking box area
undergoes continuous conformational changes. The variables
for the ligand include Position (Pos), Orientation (Ori), and
Torsion (Tor), as depicted in Fig. 1(b). During the continuous
transformation of the ligand’s conformation, its energy in
relation to the receptor also changes dynamically. A docking
is generally considered successful when the energy reaches a
relatively low value. The MD tool uses the energy variations
between the receptor and ligand as the output of a scoring
function, with Pos, Ori, and Tor as inputs. This represents
a typical optimization problem, often involving extensive
computational processes.

B. AutoDock Vina

AutoDock [22], [23], [24], [6], [3] is a suite of tools
developed by Scripps Research that are available for academic
and industrial use at no cost. These tools stand out as some
of the only widely-used docking programs to be released
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Fig. 2: (a) The algorithm flow of Vina. (b) The profiling of GS. GS, LS and AG stand for Global Search, Local Search and Armijo-Goldstein Line Search,
respectively. (c) System architecture of Vina-FPGA [19].

TABLE I: Comparing the methodologies of AD4 and Vina

AutoDock4 [6] AutoDock Vina [3]

Scoring Function
Parameters

‚ van der Waals
‚ electrostatic
‚ hydrogen bond
‚ torsional penalty
‚ desolvation

‚ hydrophobic interaction
‚ hydrogen bond
‚ torsional penalty

Serach Algorithm ‚ stochastic local search
‚ genetic algorithm

‚ gradient-based local search
‚ iterated local search
‚ global optimizer

under open-source licenses (GNU General Public License and
Apache Open Source License). Among the AutoDock tools,
Vina distinguishes itself with superior performance. Compared
to its predecessor, AD4, Vina has been demonstrated by its
developers to offer higher accuracy in docking and to compute
at greater speeds than AD4 [3]. The key differences between
the two lie in the parameter settings of the scoring function
and the search algorithm, as shown in Table I.

Although Vina takes more time consumption compared
to recent commonly used MD tools (such as rDock [25]
or LeDock [26]), it still has certain advantages in docking
accuracy. This further indicates that accelerating Vina holds
significant value. The challenge in accelerating Vina lies in it
exhibiting irregular behaviors in the form of nested loops with
changing upper bounds and differing control flows.

Vina’s core algorithm flow, namely Iterated Local Search
Global Optimizer (ILSGO), consists of four nested loops: the
Exhaustiveness Level, the Global Search (GS) Level, the Local
Search (LS) Level, and the Armijo-Goldstein Line Search
(AG) Level, as shown in Fig. 2(a) and Algorithm 1. The
Exhaustiveness Level generates multiple independent initial
ligand conformations and searches for the global optimum
in the search space based on these conformations, where
each conformation is represented by multiple dimensions of
data: Pos, Ori, and Tor. The GS, LS, and AG levels are
interdependent. The algorithm proceeds as follows: At the GS
level, initial ligand conformations are randomly perturbed by
the Mutate module, altering any dimension of Pos, Ori, or
Tor, which then proceeds to the LS level. The computation
process at the LS level is a gradient descent search based on
the BFGS method [3]. It is divided into coarse-grained LS (C-
LS) and fine-grained LS (F-LS), both of which have identical
computational procedures, differing only in step length. At the

LS level, the linear search algorithm (mainly AG) determines
the step length for the conformation search and the corre-
sponding conformation. The Hessian matrix update module
(Hupdate) calculates the new direction for ligand conformation
search. At the AG-level, it starts with updating the combination
coordinates of Pos, Ori, and Tor (POT ) in the search
direction, converting the updated POT into Coords format
data (POT2Coords). Coords is a type of internal coordinate
defined by Vina. Converting POT into Coords enables the
reduction of originally high-dimensional inputs. Moreover, it
simplifies the computation process. Based on Coords format,
it completes the energy calculation for the conformation itself
(Intra-molecular energy) and the binding energy between the
ligand and receptor molecules (Inter-molecular energy). Then,
through the derivative module, the derivative value of the
energy is calculated. If the updated ligand energy does not
get lower (the lower the energy, the more stable the docking
conformation [27]), a step length update is performed, causing
the conformation to change again. The AG level process will
end after executing whole ten iterations, or it stops earlier
when a conformation corresponding with lower energy is
obtained. The number of iterations of the outer LS level loop
is determined by the number of Tor of the ligand (defined as
Equation 1):

NumLS loops “ p25 `NumTorq{3, (1)

and the number of GS Level loops is determined by the
number of atoms in the ligand and the number of Tor (defined
as Algorithm 1 line 3):

NumGS loops “ pNumatom`110`10¨NumTorqˆ105. (2)

To gain insight into the computing characteristics of Vina,
we analyze the major computational process of Vina including
AG, Hupdate, Mutate, Accept, whose execution time ratios
are shown in Fig. 2(b). AG constitutes a significant portion of
Vina’s computational time, with over one million evaluations
typically executed. Given its iterative characteristic, it emerges
as the primary bottleneck for acceleration. Algorithm 2 depicts
the specific process of AG, which comprises five distinct
modules. These include the POT update module (line 5), the
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Algorithm 1: Iterated Local Search Global Optimizer
Input: Con P rPospx, y, zq, Oripδ, θ,Φq, T orpψT qs

Input: NatomA P A “ t1, 2, . . . , 108u

Input: NTorsionT P pT “ t1, 2, . . . , 32uq

Output: Coordsn for n=1 to N p1 ď N ď 20q

Output: f
1: for exhaustiveness do

/* The Random function is initial process. */
2: RandompConq

3: for i ď pNatom ` 110 ` 10 ¨ NTorsionq ˆ 105 do
4: i ` `

5: MutatepConq

/* The C-LS and F-LS functions are based on the BFGS method.
Their difference lies in the step length, with C-LS is larger . */

6: Con,COORD, fi “ C-LSpConq

/* The Accept function is the Metropolis acceptance criterion. */
7: if Acceptpfi, fq

8: Con,COORD, fi “ F-LSpConq

9: Coordsn “ InsertpCOORDq

10: f “ fi
11: else
12: Continue
13: end
14: end

POT2Coords module (line 6), two parallel energy computing
modules (lines 7-8), and the Derivation module (line 10).
Each iteration of the search necessitates the updating of the
conformation Coni (line 5) based on the last conformation
Coni´1, the step size α and the search direction d. The
algorithm terminates when the energy value of the latest search
outcome is lower than that of the previous iteration at a certain
threshold (line 11-12). Otherwise, the next round of iteration
is executed (line 5-10).

C. Vina-FPGA

Vina-FPGA stands as the first research to design FPGA-
based accelerator for the Vina. To facilitate the implement of
the Vina algorithm onto an FPGA, Vina-FPGA commences
with a fixed-point quantization of data into two categories:
data for storage units and data for computational units. The
storage unit data, which comprises static parameters such as
the energy values between different atom pairs, is quantized to
14 bits, including a 1-bit sign and a 7-bit fractional part. The
computational unit data, representing the receptor and ligand
details for the current docking process, is quantized to an 18-
bit total width, with a 1-bit sign and a 10-bit fractional part.
Subsequently, Vina-FPGA executes the entire computational
process within the GS Level, with the system architecture
shown in Fig. 2(c). The CPU completes the initial processing
of the Exhaustiveness Level, it obtains the computational data,
which is transferred to the FPGA via PCIe. The storage unit
data is located in the BRAM, where it is combined with the
computational unit data sent from the CPU for processing.
Data transfer and operation between modules are controlled
by Finite State Machines (FSM). The results of each iterative
computation are stored and sorted by the Container module.
Upon completion of all computations, the data is transferred
to the CPU via PCIe to output the final result file. Due to
the cyclic and iterative characteristics of the Vina algorithm,
the parallel design within Vina-FPGA is deliberately focused.
This includes a pipeline architecture within each module

Algorithm 2: Armijo-Goldstein (AG) line search Algorithm
Input: Con P rPospx, y, zq, Oripδ, θ,Φq, T orpψT qs

Input: d, f, g
Output: Con P rPospx, y, zq, Oripδ, θ,Φq, T orpψT qs

Output: α, f, g
1: Con0 “ Con
2: f0 “ f
3: α “ 20

4: for i “ 1; i ď 10; i` ` do
5: Coni “ Coni´1 ` α ˆ d
6: Coni Convert to Coordsi,XKi

7: energyinter “ Inter-molecularpXKiq

8: energyintra “ Intra-molecularpCoordsiq
9: fi “ energyinter ` energyintra

10: gi “ DerivationpCoordsiq
11: ifpfi ´ fi´1q ă 0.0001 ˆ α ˆ dˆ gi
12: break
13: else α “ α{2
14: update tα, fi, Coni, giu to {α, f, g, Con}
15: end

and parallel computations of both inter-molecular and intra-
molecular energies in the AG level.

D. Motivations

1) Quantization: Quantization is a critical step for algo-
rithm deployment on FPGA, necessitates a trade-off between
resource utilization, dictated by data bit-width, and the re-
sultant computational precision [28], [29], [30]. Vina-FPGA
employs a uniform fixed-point format, iteratively adjusting
the allocation of integer and fractional bit-width based on
variations in accuracy to determine the optimal data bit-width.
However, while a uniform quantization simplifies hardware
design, it affects the accuracy of the final Vina implementation.
Consequently, a reevaluation of the quantization strategy is
necessary to ensure the competitive accuracy of Vina hardware
implementation.

2) Rapid Evaluation & Optimization: In the deployment
of algorithms with complex computational processes like
Vina, the FPGA development phase typically spends several
months [31]. Any modifications by designers to the modules
can significantly extend this timeline due to steps such as logic
synthesis, placement and routing, and simulation. Therefore,
a framework is required for the rapid evaluation and opti-
mization to accelerate the hardware architecture design and
implement of Vina, as well as the software development.

3) Parallel AG Computing: AG takes 95% of the total
computations in Vina, that means parallel optimization of AG
can yield further acceleration. Although AG seems like an
iterative process (i.e., the input of the next iteration is the
output of the previous iteration), we find that the line search
algorithm utilized in Vina is fundamentally a pseudo-iterative
algorithm, which can be parallelized.

4) Multi-FPGA Implementation: The overall design of
Vina-FPGA is unwieldy, which constrains its scalability. The
limitations include: (1) The extensive usage of BRAM for
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Fig. 3: Probability density functions of Vina computational data.

TABLE II: Fixed-point formats for different computational data

Data Type Vina-FPGA
Fixed-Point Format

Proposed
Fixed-Point Formats

Position

<1,18,10>

<1, 18, 10>
Orientation <1, 18, 17>

Torsion <1, 18, 15>
Coords <1, 18, 12>
XK <1, 18, 9>

energy <1, 18, 10>

parameter storage, although beneficial for memory access
latency, leads to routing challenges and a consequent system
frequency decrease. (2) The container module, holding and
sorting the ultimate 20 docking results, consumes a significant
amount of resources.

III. METHODS

A. Hybrid Fixed-point Quantization

In the hardware implementation of Vina-FPGA-cluster, we
employ a hybrid fixed-point quantization strategy to meet
the accuracy and low hardware footprint requirements. This
strategy offers more flexibility than the fixed-point quanti-
zation strategy in Vina-FPGA, which fixes the number of
fractional bits for all computational data. The hybrid fixed-
point quantization strategy adapts to the precision needs of
different computational processes to reduce the accumulation
of errors and ultimately minimize the loss of accuracy. Initially,
we perform a statistical characteristics of the numerical value
distribution for each data of the computational modules in the
Vina algorithm. Then, the distribution helps us determining the
maximum and minimum values of each input data and assess
the density of data. Finally, we establish the integer bit-width
for the fixed-point data representation and adjust the fractional
bit-width in response to the data distribution [32].

As shown in Fig. 3, the statistical distributions of numerical
values required for computation are presented. It is observed
that the value range of most computation data is concentrated
around a central point, with the probability density gradually
decreasing as the absolute value of the number increases. In
Vina-FPGA, the bit-width for all computational data is 18 bits,
consisting of 1 bit for the sign, 7 bits for the integer part, and
10 bits for the fractional part, denoted as x1, 18, 10y. Similar
to Vina-FPGA, the Position data shows the largest numerical

Fig. 4: Comparison of energy differences under different fixed-point quantiza-
tion strategies. The ’FXP’ indicates fixed-point. The ’CPU baseline’ indicates
the original Vina results from floating-point computations.

range, but this value does not exceed 128, thus we continue to
retain a maximum of 7 bits for the integer part. Based on this,
we further modify the bit-width of the fractional part according
to the displayed probability function, with the results shown
in Table II. It should be noted that for ’position’ and ’energy’,
to ensure their effective integer range, we have preserved the
data format of x1, 18, 10y. The XK is used to record all
the coordinates of each atom in the docking box. numerical
range lies within ±250 and necessitates a larger allocation of
integer bits. Hence, the data format for XK is set to x1, 18, 9y.
As for other computational data, the fractional bit-width is
maximized while ensuring the integer bit-width requirements
are met. Energy is a crucial metric in evaluating the accuracy
of Vina process. The lower energy indicates higher reliability
of docking results. Firstly, we configure a bit-width allocation
based on the hybrid fixed-point strategy on the same Matlab
platform as Vina-FPGA, identical to the one presented in
Table II. Then, we test the energy of the ligand complexes
calculated using Vina-FPGA’s fixed-point quantization strategy
(FXP) and hybrid fixed-point quantization strategy (Hybrid-
FXP) under mainstream datasets [33], [34], [35]. The energy
difference is denoted by:

Energydiff “
pEnergyFXP ´ EnergyFLP q

EnergyFLP
, (3)

where EnergyFLP indicates energy results from original
Vina with floating-point computations.
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Fig. 4 illustrates the precision comparison between fixed-
point and hybrid fixed-point quantization strategies, with the
original Vina (CPU) serving as the baseline reference. The
result evidences that the energy difference significantly de-
creases with the use of hybrid fixed-point quantization. More
results to be discussed in Section V-B1.

B. A SystemC-based Model

The architecture of Vina-FPGA presents some opportuni-
ties for optimization. Utilizing a pure FPGA as the target
deployment device is not suitable for complex and irregular
algorithms like Vina. Heterogeneous platforms, represented
by Zynq, hold significant potential for hardware acceleration
of such irregular algorithms [36]. However, this approach
requires extensive time for logic synthesis to evaluate and
validate the performance of the design, thereby hindering
the iterative development period of accelerators. The specific
details are as follows: (1) In the Vina-FPGA design phase,
the Register-transfer Level (RTL) based simulation is highly
time-consuming due to the performance constraints of EDA
tools [37]; (2) In the heterogeneous development, software
design on the processing system (PS) side requires results
from hardware design for optimization, but the prolonged
hardware design cycle significantly increases the total duration
required for system design [38]. Therefore, we propose a
SystemC-based SW/HW co-design model. By simulating the
hardware architecture design through SystemC and leveraging
the Xilinx-Qemu [39] platform to simulate the ARM core,
we can comprehensively evaluate and optimize the entire
heterogeneous acceleration system.

As shown in Fig. 5, we propose a hardware-software co-
design model, encompassing a hardware accelerator architec-
ture based on SystemC and Xilinx-Qemu. These components
are coupled through a Remote Port. The Vina hardware ac-
celerator model is encapsulated as a TLM (Transaction-Level
Modeling) device and mounted on the AXI bus. Relevant data
from the ARM core is transmitted via a SystemC TLM-SoC
wrapper and Remote port IPC (Inter-Process Communication).
Specifically, (1) The SystemC model excludes interactions
with external and memory data like PC, DDR, and BRAM.
Data needed for these interactions is stored in a txt file,
encapsulated within a globally defined structure. This structure
contains data such as inter-molecular energy, intra-molecular
energy, and various initial global variables. At the start of
the model, the file is processed to load the initialization data
into the global data area. (2) We construct all computational
components in the Vina algorithm flow. Since Vina’s source
code is developed in C/C++, we can quickly build compu-
tational components and ensure accurate results. Additionally,
Vina-FPGA already obtains detailed hardware design specifics,
such as the operational clock cycles for each module, from
basic mathematical operation units (e.g., the latency for a
division operation is 5 cycles) to the module level. Thus,
we can use time annotation to replace precise clocks in the
RTL model. Time annotation is a mechanism for adding
temporal information to components, enabling us to specify
or re-write the expected duration for component operations.
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Fig. 5: The SystemC-based SW/HW co-design model.

(3) The computational components are organized into three
distinct controllers (GS, LS, and AG controllers) for high-level
interface. This structure aligns with Vina’s computational flow.
(4) We simplify the design of memory components, taking
advantage of the fixed cycles of DDR and BRAM accesses.
We model memory accesses using assignment operations
combined with time annotations that are sourced from AXI bus
and memory access cycle consumption identified in the Vina-
FPGA design. (5) After rewriting the computation processes of
various computational components and setting their operation
delays, we divided them into controller models and submodule
models. The controller models correspond to the three levels
of loops in Vina computations: GS, LS, and AG. These con-
troller models use SC METHOD processes in SystemC to
facilitate data transfer and information synchronization among
various functional modules. The submodule models represent
specific computational operations involved in each controller
model, as shown in Fig. 2a. During modeling, all submod-
ule models employ SC THREAD and are suspended with
waitpq at the end of their scheduling to save simulation
time. This approach allows us to replicate the loops and the
corresponding cycles of computation as they occur in Vina-
FPGA runtime. (6) The previous work [40] provides precise
cycle accuracy for data transfer on the AXI bus. Moreover,
the hardware accelerator receives data from the ARM side
via REG Files [39] that are virtual representations within the
emulator of the hardware registers. (7) Xilinx-Qemu performs
the functional modeling and simulation of the ARM side. To
implement data transmission between hardware model and
ARM via Remote port IPC, disabling the remote port and
the Socket protocol is required.

The proposed SystemC model not only facilitates the es-
tablishment of a hardware accelerator model but also ensures
compatibility with heterogeneous architectures like Zynq. This
means that if there are collaborative tasks on the PS side,
joint debugging after completing the PL side is not necessary;
development can proceed concurrently with the PL side,
shown as Fig. 6(a). For the crucial hardware evaluation and
optimization process, we conducted a comparative analysis of
the simulation time for the entire model on a typical docking
dataset. As shown in Fig. 6(b), due to the extensive simulation
time required by the RTL model to complete a full docking, the
proposed SystemC model averages a 101-fold speed increase
over the RTL model. This demonstrates that the SystemC
model can significantly reduce the time required for hardware
design evaluation and optimization through simulation results.
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C. Bidirectional-AG

The AG level, serving as the innermost nested loop iter-
ation within Vina, occupies 95% of the execution time of
Vina. Therefore, parallelization of the AG level is capable
of substantially enhancing the computational efficiency of
Vina. We fully analyze the flow of AG line search algorithm
(Algorithm 2) in Vina, and the distributions of iteration counts
at the termination of each AG search. We can summarize two
key observations: (1) The computing input (Coni) required for
each AG iteration is predetermined, allowing for independent
pre-computation; (2) Leveraging the prior observation, starting
from the iteration points where the highest possibility occurs
can minimize the computational load, considering AG’s non-
uniform distribution of iteration counts.

We first give an equivalent transformation of the update of
Coni (line 5 of Algorithm 2) as:

Coni “ Con0 ` 21´i ˆ α ˆ d, (4)

where the input Coni of each iteration depends on i, Con0, α,
and d. Notably, Con0, α and d are three constant values, and
Coni will not change once it is calculated at the beginning
of the iteration. Therefore, all Conis pi “ 1, 2, . . . , 10q

can be pre-computed and the iterations can be performed
independently, indicating a potential transfer from the iterative
processing to a parallel one.

Leveraging the prior observation, pre-computing all
Conispi “ 1, 2, . . . , 10q permits parallel computation of the
AG line search algorithm. However, deploying this design
in hardware might entail unacceptable resource overheads.
We execute Vina on three representative molecular docking
datasets [33], [34], [35] and record the iteration counts at
the termination of AG searches, as shown in Fig. 7. The
distribution of AG’s termination iterations is non-uniform and
skewed, with over 50% lying at the first (i.e., i “ 1) and the
last (i.e., i “ 10) iteration. Moreover, other iteration counts
average a termination rate of about 5%. Given this distribution,
an intuitive approach is to deploy bidirectional search using
two sets of AG computational hardware units, operating from
both (front and end) sides towards to the center. Moreover, by
strategically selecting initial points that are probably close to
the termination of iteration counts, we can notably reduce the
computational load.
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Fig. 7: The distribution of AG’s termination iteration counts.

To obtain a better trade-off between the acceleration ratio
and resource consumption, we propose the Bidirectional-AG
architecture, which incorporates two AG modules that compute
simultaneously. The Bidirectional-AG architecture includes the
Start-From-Edge (SFE) strategy and Start-From-Middle (SFM)
strategy, as illustrated in Fig. 8(a).

The SFE strategy enables two AG modules (AG1 and
AG2) to start from the first (i.e., Con1) and the last (i.e.,
Con10) initial points, respectively. Both of the AG modules
perform their corresponding calculations and move towards
to the middle (i.e., Con5) in parallel. The output of the SFE
strategy is based on a corresponding configuration table. The
configuration table is shown in Fig. 8(b), where we denote
an AG module’s result as ”Y” if the criterion in line 11 of
Algorithm 2 is satisfied, otherwise, we denote ”N”. The ”AG1”
and ”AG2” in the configuration table output indicate the
calculation results of the AG1 and AG2 modules, respectively.
The ”Continue” denotes both of the two AG modules to
continue their iteration. The SFE strategy leverages the non-
uniform distribution of the termination of iteration count and
reduces computational load, because the two AG modules are
highly possible to satisfy the criterion (i.e., terminate) on either
front or end sides. The total execution time of the SFE strategy
depends mainly on the Niter, i.e.:

TSFE “

#

Titer ˆ Niter, if 1 ď Niter ď 5

Titer ˆ p11 ´ Niterq, if 6 ď Niter ď 10
(5)

where Niter represents the iteration count needed to satisfy
the termination criteria in the origianl Vina algorithm.

Therefore, the acceleration ratio achieved by the
Bidirectional-AG design of SFE strategy compared to
the original AG design can be obtained as:

TAG

TSFE
“

#

1, if 1 ď Niter ď 5

Niter
11´Niter

, if 6 ď Niter ď 10
(6)

Hence, the performance of the Bidirectional-AG architecture
can only be harnessed when the Niter exceeds 5, and as the
Niter increases, the performance improves correspondingly.
The average acceleration ACCSFE of the SFE strategy is
given by:

ACCSFE “

10
ÿ

Niter

P pNiterq ˆ
TAG

TSFE
. (7)

Whereas P pNiterq denotes the probability associated with
different Niter.

The SFM strategy is complementary to the SFE strategy,
and it is suitable for cases where most of the terminations
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Fig. 8: (a) The SFE and SFM strategies, where two AG (AG1 and AG2)
modules are performed from different initial points. The SFM strategy
performs distinctly if the result of Con6 satisfies the criterion (line 11 of
Algorithm 2) (Y) or not (N). (b) The configuration table of SFE and SFM
strategies. The ”Continue” signifies the ongoing iteration of AG1 and AG2
computations under the corresponding strategy.

of iteration counts are gathered in the middle (e.g., Con5 and
Con6). This strategy (see Fig. 8) contains two sequential steps.
In step one, AG1 starts from the first (i.e., Con1) initial point
and AG2 starts from the middle (i.e., Con6) point. In step two,
the initial points of AG1 and AG2 will be determined by the
results of step one, as illustrated in Fig. 8. The outputs of the
two steps can be referred to the corresponding configuration
table in Fig. 8(b). Notably, the SFM strategy ensures the
correctness of the AG algorithm, and it only requires negligible
resource overhead compared to that of SFE. Similar to SFE,
the acceleration ratio of the SFM can be calculated by

ACCSFM “

10
ÿ

Niter

P pNiterq ˆ
TAG

TSFM
, (8)

where the TAG

TSFM
can be obtained as:

TAG

TSFM
“

$

’

’

’

’

’

&

’

’

’

’

’

%

1, if1 ď Niter ď 3

Niter
7´Niter

, if4 ď Niter ď 6

Niter
Niter´5

, if7 ď Niter ď 8

Niter
12´Niter

, if9 ď Niter ď 10

(9)

We further design a selection module that dynamically
selects which one of the two strategies are utilized based on the
previous iteration terminations. Details of the selection module
are described in Section IV-C2.

The results of the SystemC model show that the Bidirection-
AG architecture, including SFE and SFM strategies, obtains a
theoretical acceleration ratio up to 5.87ˆ over the original
AG architecture in Vina-FPGA, with merely 2ˆ resources
overhead.
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IV. ARCHITECTURE OF VINA-FPGA-CLUSTER

A. Overview of Vina-FPGA-cluster

Fig. 9 depicts the proposed hardware architecture of Vina-
FPGA-cluster. There are four Zynq Ultrascale+ FPGAs that
perform the ILSGO calculations in parallel. The ligands,
receptors, and Exhaustiveness data required for their compu-
tations are transmitted from a PC via an Ethernet connection.
The PS (Processing System) side runs the PetaLinux operating
system, which is in charge of managing the data received
via the Ethernet and storing it into the necessary on-chip
memory and DDR on the PL (Programmable Logic) side via
the AXI bus according to computational needs. Each Zynq’s
computation can be considered independent, signifying that
Vina-FPGA-cluster is capable of parallelizing the Exhaustive-
ness Level computations. Specifically, the parallel computation
of the Exhaustiveness Level involves different Zynq FPGAs
calculating various conformations of the same Ligand. The
scheduling relationship between the CPU and Zynq FPGAs
under these circumstances is illustrated in Fig. 10(a). Since it is
the same Ligand, the volume of data to be transferred remains
consistent. The variance in the computation latency of ILGSO
is attributed to different initial conformations corresponding to
different loop nets, which is a random process [12]. The PL
side executes the ILGSO computations. There are listed the
architecture differences from Vina-FPGA:

Data Communication: The data communication between
FPGA and CPU has been changed from PCIe to Ethernet,
making our design plug-and-play. This means users can utilize
it without altering their current hardware setups, simply by
connecting an Ethernet cable. Nevertheless, the choice be-
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tween PCIe and Ethernet as the communication port in our
approach is not conflicting. As long as communication is not
the bottleneck of the cluster, as we shown in Section V-D, it
is not difficult to switch from one to another. In this paper,
we demonstrate and experiment with the design implemented
on 4 FPGAs. Moreover, in theory, this cluster can be easily
scaled to 64 or even more FPGAs.

Parameter Accessing: The memory accessing of parame-
ters required for computation (Intra-energy, Inter-energy) has
been optimized. In Vina-FPGA, all computational parame-
ters were stored in the on-chip memory. This led to nearly
100% consumption of on-chip BRAM memory and caused
difficulties in layout and routing, which in turn pulled down
the system frequency. In Vina-FPGA-cluster, we have placed
the larger and more frequently randomly accessed Inter-energy
parameters into DDR with 2 HP-Ports accessing. The inter-
molecular energy consists of 17 sheets, each with a size
of 281,515 (entries for different atom distances) ˆ 14 (bits
for each grid energy in a fixed-point value), with the 14
bits actually stored in DDR as 32 bits. For intar-energy
parameters, they are stored in the on-chip memory (BRAM &
URAM). The memory modification details will be introduced
in Section IV-C1.

Bidirectional-AG: As introduced in Section III-C, the
Bidirectional-AG module parallelizes the originally serial AG
iterative computations. This module can achieve more than
2ˆ speed gain under twice the resource consumption of the
original AG module. The micro-architecture design specifics
of the Bidirectional-AG will be detailed in Section IV-C2.

Heterogeneous Architecture: The introduction of an ARM
co-processor (PS) effectively enhances the efficiency of data
processing. The PS is responsible for the reception and organi-
zation of the initialization data for computation, mapping it to
the corresponding memory units (DDR, BRAM). Additionally,
the PS undertakes the function of the container module, which
is in charge of results sorting in Vina-FPGA. Specifically,
the energies corresponding to the ligand conformations post-
ILGSO computation are sorted, containing the smallest top 20.
However, this imposes a significant on-chip memory burden,
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hence the introduction of the PS further alleviates the on-
chip memory cost pressure on the PL side. The collaboration
between the PS and PL sides is depicted in Fig. 10(b).

B. Software Architecture

The software architecture of Vina-FPGA-Cluster primarily
comprises two parts, PC and PS, as shown in Fig 9. The PC
side mainly handles the reading of files required for molecular
docking and the preprocessing of data to acquire what is
necessary for the Vina computation module. The PS side
is responsible for receiving network data, mapping data to
DDR and BRAM for computation by the PL side, sorting the
computational results, and transmitting them back to the PC
via the network. Specifically, as shown in Fig. 11, the inter-
active process between PC and PS software is demonstrated.
The PC starts by reading parameter files, including receptor,
ligand, and configuration files. It then parses the necessary
computational parameters, such as atom types, coordinates,
and charges.The initialized data sent from the CPU to the
FPGAs is shown in the Table VII within the appendix. For an
explanation of the above data, please refer to the appendix. The
PC quantizes the data and sends it to various Zynq devices via
the network. The PS side of Zynq receives the necessary data
through the network and writes it correspondingly into DDR
and BRAM. PS informs the PL side to start computation by
configuring communication registers. Each computation result
from the PL side is sent to PS for sorting, which is executed
in parallel with the ongoing computation of the PL. Once all
Vina computations are complete, PS sends the data back to the
PC via the network. The PC side performs the final sorting of
all received data and outputs the final results.
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C. Hardware Microarchitecture

1) Parameter Accessing: The inter-molecular energy is the
sum of energies between all ligand atoms and receptor atoms.
However, the huge number of atoms in the receptor molecule,
normally a protein, makes it impossible to calculate energy
with a reasonable time overhead. To lower the computation
complexity, the inter-molecular energy calculation in Vina is
implemented by trilinear interpolations based on the precal-
culated grid data from the host CPU [41]. As depicted in
Fig. 12(a), grid data refers to the corresponding energy values
for different types of atoms at various distances, known as the
inter-energy parameter. In Vina, there exist 153 different types
atom grid data tables such as for Hydrogen atoms, Carbon
atoms, Nitrogen atoms, Phosphorus atoms, and so forth. The
acquisition of specific data from these tables is accomplished
using molecular distance as the index value. In Vina-FPGA-
cluster, these grid data tables are stored in the DDR, and the 8
required data for each computation are retrieved beforehand.
However, the access to these 8 data points is random and the
addresses are discontinuous. To minimize the latency caused
by data access, we employed Outstanding transactions [42]
in AXI to achieve continuous data access at non-continuous
addresses. As depicted in Fig. 12(b), there is a comparison be-
tween conventional transactions and outstanding transactions
under the AXI protocol. It is evident that for continuous access
at non-continuous addresses using conventional transactions,
each access necessitates completing a master-slave handshake
based on the AXI protocol, which significantly increases data
access overhead. In contrast, using Outstanding transactions
allows continuous data access with just a single handshake,
even when the addresses are non-continuous. Outstanding
transactions effectively lowers the latency for master-slave
handshakes in non-continuous address data accesses, leading
to an average 3.4ˆ increase in data access speed [43]. Subse-
quently, we optimized the process for inter-molecular energy
calculation, separating the memory access, which was tightly
coupled in the computational process of Vina-FPGA, into an
independent memory access module. This module, along with
the computational module, is designed to be fully pipelined,
as illustrated in Fig. 12(c). This design ensures efficient data
retrieval and maximally conceals the latency of DDR data
access. More importantly, it reduces the consumption of on-
chip memory resources, such as BRAM and URAM.

2) Bidirectional-AG: The Bidirectional-AG includes a
Preload Unit, dual parallel AG units, a Data Selector A, a
Hessian Matrix Update Module, and a Least Frequent Decision
Unit (LFDU), shown in Fig. 13.

The Preload Unit prepares the necessary input Cons for
Bidirectional-AG computations. It computes based on the
equation 4, where division operations can be substituted with
shift operations, as shown in Fig. 13(b). The a, d, and Con0
are pre-determined values. The only variable that needs to be
updated is the current iteration value i, which is determined
based on the SFE and SFM strategies. Once the SFE and SFM
strategies are set, it becomes feasible to prepare in advance for
the next computation required values of Point A and Point B.

The dual parallel AG units initiate their search from distinct
points, point A and point B. As illustrated in Fig. 13(c)
and referenced by Vina-FPGA, each AG unit comprises
five sub-modules: POT Update, POT2Coords, Inter-molecular,
Intra-molecular, and Derivation modules. Notably, the Inter-
molecular and Intra-molecular modules execute in parallel.

The Data Selector A serves to select the output following
AG’s iterative computation. As illustrated in Fig. 13(d). Data
Selector A takes the results from two AG modules and LFDU
as inputs, and it produces outputs that comprise both the final
computation results and the termination iteration counts based
on the strategies outlined in the configuration table. Specifi-
cally, under the SFE strategy, computation continues only if
AG2 satisfies the condition in Algorithm 2, and it proceeds
until other conditions are met to output corresponding results.
Under the SFM strategy, the next computational direction is
determined based on the current value of AG2 (corresponding
to Con6). If AG2 meets the judgment condition, the remaining
computations are completed between Con1 and Con5. If AG2
does not meet the condition, the remaining computations are
carried out between Con7 and Con10.

The LFDU determines the strategy for the subsequent AG
iterative loops. As depicted in Fig. 13(e), the LFDU receives
the termination of iteration counts from Data Selector A. This
data undergoes statistical processing via an up-down counter
mechanism. When the termination of iteration counts value
falls within the range from 3 to 7, the counter increments by
one; otherwise, it decreases. If the counter value exceeds 5,
the SFM strategy is selected; otherwise, the SFE strategy is
chosen.
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TABLE III: Resource utilization of Vina–FPGA-cluster (single board)

Mutate Metropolis
accept Hupdate Conformation

update
Coords

generation

Inter-
molecular

energy

Intra-
molecular

energy
Derivation Others Total

LUT 6,745 4,666 18,512 24,794 18,725 7,563 4,334 29,530 14,258 129,127 (56.04%)
FF 5,427 5,792 15,966 17,102 26,580 7,135 4,600 22,824 17,104 122,530 (26.59%)

DSP 36 0 499 136 136 72 28 30 4 941 (54.46%)
BRAM 0 0 9.5 0 0 0 251 0 2 262.5 (84.13%)
URAM 0 0 0 0 0 0 4 0 0 4 (4.16%)

Vina-FPGA-Cluster

(Four ZCU104 Boards)

Ethernet Switch

Visual

docking result

Vina process 

with its 

reconfigurable files

Fig. 14: Experimental setup of Vina-FPGA-cluster: Hardware implementation
of four Xilinx Zynq UltraScale+ ZCU104 boards.The visual docking result is
generated by specific software that displays information based on the docking
result files and this process not included in the computation (TE2E ) time.

V. EXPERIMENTS

A. Experimental Setup

1) Implementation Details: We implement our design on
four FPGA boards, Xilinx Zynq UltraScale+ ZCU104, as
shown in Fig. 14. Each board consists of a quad-core ARM
Cortex-A53 applications processor, 504K system logic cells,
38Mb on-chip memory, and 1728 DSP slices. The FPGA DDR
memory has four channels (HP-Port) with 77GB/s memory
bandwidth. We develop Vina-FPGA-cluster in Verilog HDL
and synthesize the design by Xilinx Vivado 2020.2. The
resource utilization and clock rate report are also obtained
through Vivado. Each FPGA board utilizes identical resources
and operates at the same frequency. As shown in Table III,
the Vina-FPGA-cluster on single ZCU104 consumes 129K
LUTs (56.04%), 122K FFs (26.59%), 941 DSPs (54.46%),
262.5 BRAMs (84.13%), and 4 URAMs (4.16%). Vina-FPGA-
cluster runs at 200MHz. To achieve this frequency under
conditions of high BRAM utilization, we generate explicit
physical location mappings for BRAM and related compo-
nents, including CLBs and DSPs. We measure the resulting
frequency of the mapped design and interconnect utilization
metrics to assess the extent of wiring reduction. It should
be emphasized that, despite the substantial residual capacity
of URAM, it doesn’t guarantee sufficient on-chip memory
for full floating-point computational requirements. Addition-
ally, full floating-point operations would lead to an extended
computation latency on the FPGA, attributable to the latency
enhancements introduced by floating-point IP cores [44].

2) Baselines: As shown in Table IV, we compare our de-
sign with state-of-the-art baselines: CPU-only platform (Intel

I7-12700KF CPU), Vina-GPU (Nvidia RTX3090) [11], Vina-
FPGA [19].

3) Benchmarks: We use the three representative molecular
docking datasets as the benchmarks, that are comprised of 85
complexes from the Astex Diversity Set [33], 35 complexes
from CASF-2013 [35], and 20 complexes from the Protein
Data Bank [34]. They cover a wide range of ligand com-
plexities and targets properties. Each complex file includes
an X-ray structure, an initial random pose of its ligand and
the corresponding receptor (in .pdbqt format).

4) Accuracy Metrics: We evaluate the accuracy of Vina-
FPGA-cluster by:

Docking Energy: Vina typically aims to simulate the dock-
ing process between a small molecule (ligand) and a larger
molecule (often a protein receptor). Binding energy, often
measured in kcal/mol, serves as a key indicator of this affinity.
A lower docking energy (numerically more negative) typically
signifies a stronger docking affinity.

RMSD: The docking results are typically validated using
the output energy between the ligand and receptor, along with
the root-mean-square deviation (RMSD) between the output
ligand conformation and the X-ray measurements, which serve
as the ground truth.

5) Performance Metrics: We evaluate the performance of
Vina-FPGA-cluster by:

Latency of hardware execution (LoH) TLoH : The latency
of hardware execution refers to the time taken to perform
the Vina computation on the hardware accelerator. Prior to
runtime, essential data such as global data, inter-energy param-
eters, and intra-energy parameters are pre-stored in the FPGA’s
registers, DDR, and on-chip memory (BRAM & URAM),
respectively.

End-to-End (E2E) latency TE2E : The TE2E of Vina-
FPGA-cluster includes (1) the latency of CPU preparing initial
data Tini, (2) the latency of CPU-FPGA data transaction Ttran
(including result transaction), (3) the latency of executing
Vina computation on the accelerator (Latency of hardware
execution TLoH ). Then, the E2E latency of Vina-FPGA-cluster
is calculated by: TE2E=Tini+Ttran+TLoH .

Energy Efficiency (EE): The energy efficiency means the
value of useful power-latency-product [46], denoted as below:

EE “ Core’s power consumption (W) ˆ TE2E . (10)

B. Impact of the Optimizations

To demonstrate the effectiveness of the optimizations pro-
posed in Vina-FPGA-Cluster, we run the docking process on a
single board within Vina-FPGA-Cluster and compared it with
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TABLE IV: Specifications of platforms

Platforms Processor Platform Technology Frequency On-chip Memory Memory Bandwidth
CPU Intel I7-12700KF Intel 7 nm 3.6 GHz 25MB L3 cache 76.8 GB/s (DDR 5)

Vina-GPU [11] Nvidia RTX3090 TSMC 7 nm 1.7 GHz 6 MB L2 cache 936.2 GB/s
Vina-FPGA [19] Kintex UltraScale XCKU060 TSMC 20 nm 150 MHz 4.75 MB (BRAM only) 77 GB/s

Vina-FPGA-cluster Zynq UltraScale+ ZCU104 TSMC 16 nm 200 MHz 4.75 MB (BRAM + URAM) 77 GB/s

Fig. 15: Distribution of RMSD for different implementations. Vina-CPU is the original Vina deployed in CPU. The crimson rectangle denotes the percentage
of successful docking. (Normally, a docking conformation with a RMSD less than 2Å is considered a successful one [45]).

Fig. 16: Docking energy comparisons of Vina-FPGA and Vina-FPGA-cluster
under three representative molecular docking dataset.

Vina-FPGA in terms of accuracy, latency and scalability. De-
spite Vina-FPGA and Vina-FPGA-cluster being implemented
on separate FPGA platforms, the comparison of their perfor-
mance on the same dataset also provides meaningful insights.
This approach is consistent with the established methodology
for contrasting FPGA-based deployment designs and related
work in the field [47], [48].

1) Accuracy optimization: To highlight the improvements
in molecular docking accuracy from our quantization strategy,
we assess its impact by examining docking energy and RMSD,
fundamental measures of docking performance. Fig. 16 shows
the energy differences in docking performed by Vina-FPGA
and Vina-FPGA-cluster under the same random seed at an
exhaustiveness of 32. Each red dot in the figure represents
the docking energy for a given ligand-receptor complex, with
the x and y coordinates of the dot indicating the original
Vina docking energy and FPGA docking energy, respectively,
under the same random seed. Ideally, all red dots should
align along the diagonal line. However, it’s observed that
while most output energies align with the diagonal, there are
deviations for some points. Notably, data from Vina-FPGA-
cluster tends to align more closely with the diagonal line,
showing improved accuracy and reduced variance compared to
Vina-FPGA. Similarly, we reconstruct the RMSD experiment
at an exhaustiveness of 32 for three typical datasets, with
results shown in Fig. 15. Vina-FPGA-Cluster shows significant

TABLE V: The latency improvement of Vina-FPGA-Cluster (on a single
board) compared to Vina-FPGA

Vina-FPGA Vina-FPGA-Cluster Improvement
Tini 1.903 s 1.903 s 1.00ˆ

Ttran 0.156 s 0.446 s 0.35ˆ

TLoH 46.343 s 11.883 s 3.90ˆ

TE2E 48.402 s 14.232 s 3.40ˆ

improvements in mean value (mu) and variance (std) over
Vina-FPGA, with values of 3.74 and 3.24, respectively, closely
aligning with the original Vina. The success ratio loss is less
than 0.2%. These experimental results effectively demonstrate
the accuracy enhancement of Vina-FPGA-Cluster compared to
Vina-FPGA.

2) Latency optimization: To demonstrate the latency reduc-
tion brought by Vina-FPGA-cluster’s optimized design, we
compare the key latency metrics of Vina-FPGA and Vina-
FPGA-cluster on a single board. These metrics include Tini,
Ttran, and TLoH , detailed in Table V. Since Vina-FPGA
and Vina-FPGA-cluster use the same total bit widths for
quantization data, their Tini values match. Vina-FPGA com-
municates with the PC via PCIe, offering greater bandwidth
and thus shorter transmission times. However, this setup limits
scalability, as discussed further in Section V-B3. Benefiting
from the Bidirectional-AG design, Vina-FPGA-cluster’s TLoH

improves by 3.90ˆ compared to Vina-FPGA. This substantial
boost in TLoH leads to a 3.40ˆ acceleration in TE2E for Vina-
FPGA-cluster, even on a single board, relative to Vina-FPGA.

3) Scalability optimization: Regarding scalability optimiza-
tion, we analyze from resource consumption. Fig. 17 illustrates
the LUTs and FFs utilization for various modules in Vina-
FPGA and Vina-FPGA-cluster, which are the basic FPGA re-
sources [49]. The data reveals that Vina-FPGA-cluster expends
over twice the resources in its core computational module.
However, considering this leads to more than a twofold
increase in processing speed, the resource trade-off is justified.
Significantly, thanks to Vina-FPGA-cluster’s transition from
PCIe to an ARM-driven Ethernet port and offloading container
module computations to ARM, it demonstrates reduced overall

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3388323

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Vrije Universiteit Brussel. Downloaded on October 02,2024 at 08:36:49 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, DECEMBER XXXX 13

TABLE VI: Performance and energy comparison of CPU, Vina-GPU, Vina-FPGA, and Vina-FPGA-cluster (on four boards)

Evaluation metric
of performance CPU-only Vina-GPU [11] Vina-FPGA [19] Vina-FPGA-Cluster Improvement

over CPU
Improvement

over Vina-GPU
Improvement

over Vina-FPGA
TLoH 180.54s 7.27s 46.34s 2.98s 60.58ˆ 2.44ˆ 15.55ˆ

TE2E 182.28s 9.20s 48.40s 6.67s 27.33ˆ 1.38ˆ 7.26ˆ

Power Core: 47.34W Core: 67.2W Core: 4.70W Core: 19.48W 2.43ˆ 3.45ˆ 0.24ˆBoard:N/A Board: 203W Board: 12.84W Board: 53.16W
EE 8629.14J 618.24J 227.48J 129.93J 66.41ˆ 4.76ˆ 1.75ˆ
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Fig. 17: The basis FPGA resource consumption comparison of Vina-FPGA and Vina-FPGA-cluster (on a single board).

resource consumption. These optimizations will be critical for
future endeavors in deploying multiple computation units on a
single high-capacity FPGA, optimizing both performance and
resource efficiency.

C. Cross Platform Comparison

In our study, we configure a cluster using four ZCU104
boards to execute molecular docking process. We compare
the performance of this setup with three baseline platforms
in terms of TLoH , TE2E , power consumption, and energy
efficiency. The baseline benchmark platforms are: (1) a CPU-
only platform (Intel I7-12700KF), (2) Vina-GPU (Nvidia RTX
3090), and (3) Vina-FPGA (Kintex UltraScale XCKU060).
The configurations for the molecular docking pockets are
uniformly maintained across all platforms, with identical initial
random seeds and the exhaustiveness set to 32. The compar-
ative results are presented in Table VI.

In evaluating the TLoH metric, the Vina-FPGA-cluster,
leveraging its multi-tiered parallel architecture, achieves a
substantial speedup ranging from 2.44ˆ „ 60.58ˆ relative to
the three established baseline platforms. This acceleration is
attributed to the multi-level parallelism: fine-grained module-
level pipeline parallel processing, concurrent computation of
core computations enabled by the Bidirectional-AG design,
and the parallel computations across multiple boards.

Regarding the TE2E , the increased data transmission re-
quirements inherent to the Vina-FPGA-cluster lead to a slight
reduction in speedup. However, given the scalability of this
architecture, supporting expansions beyond 64 boards, such
trade-offs are considered within acceptable bounds.

In terms of power consumption, the energy usage of Vina-
FPGA-cluster (four FPGA boards) remains significantly lower
than that of the CPU and GPU. Compared to the Vina-FPGA,
the power consumption of each FPGA in the Vina-FPGA-

cluster is slightly higher due to the presence of the ARM hard
core in the Zynq used in the cluster.

In the context of energy efficiency (EE), the Vina-FPGA-
cluster demonstrates enhancements ranging from 1.75ˆ „

66.41ˆ in comparison to three baseline platforms. A key
observation from our experiments emphasizes that the Vina-
FPGA-cluster, while achieving a 1.38ˆ speed increase com-
pared to Vina-GPU, maintains core power consumption and
board-level power consumption at only 28.99% and 26.19%,
respectively. It highlights the efficacy and potential of FPGA-
based solutions in high-performance computing scenarios.

D. Analysis

The results of Table V indicate that choosing Ethernet as the
communication method for the cluster, to meet the plug-and-
play requirements, introduces some communication latency.
Therefore, to further analyze the entire system, we construct a
roofline model. The original roofline model [50] is as follows:

#FP ops

Latency
“ minpPeak FLOPS,

#FP ops

Bytes
ˆPeak MBW q. (11)

where the #FP ops represents the number of floating-
point operations, Latency represents the time consumption
of computing, and Peak FLOPS represents the system’s
performance (throughput). The #FP ops{Bytes denotes the
operational intensity, where Bytes refers to the amount of data
that needs to be accessed from memory for computation. The
Peak MBW represents the peak memory bandwidth.

Due to the variable data bit widths in Vina-FPGA-Cluster,
we equate the number of docking iterations (Exhaustiveness,
Ex) to the number of floating-point operations (#FP ops)
in the original model. The peak bandwidth (Peak BW ) of
Ethernet communication is equated to the Peak MBW , and
the volume of data transferred is defined as the amount of
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(a) (b)

Fig. 18: (a) Analysis for multi-board designs. (b) Roofline model with ceilings under different peak bandwidth of Ethernet.

data needed to complete one docking iteration (including
data required for computation and data returned with results).
Therefore, our model is defined as:

Ex

Latency
“ minpPeak perf,

Ex

Bytes
ˆ Peak BW q. (12)

Each Ex is indivisible, and a FPGA board can only execute
one Ex at a time. Therefore, when the Ex is less than the num-
ber of boards, the system’s peak performance (Peak perf ) is
the number of Ex operations; when the Ex is greater than
or equal to the number of boards, the Peak perf is limited
by the number of boards. The definition of Peak perf is as
follows:

Peak perf “

#

Ex ˆ 1
THW

, Ex ă Nboard

Nboard ˆ 1
THW

, Nboard ď Ex
, (13)

where Nboard represents the number of boards, THW is
the time it takes for the hardware to perform one docking
operation, and Bytes is the amount of data that communicated
between the host CPU to the FPGA for the whole computation.
Specifically, the definition of Bytes is as follow:

Bytes “ Bytesintra `Bytesinter `pBytesglobal `BytesresultsqˆEx. (14)

The data above corresponds to the intra-molecular energy
table (up to 2,510,424 Bytes), inter-molecular energy table (up
to 19,143,020 Bytes), global variables (up to 18,816 Bytes),
and computation results (up to 13,840 Bytes), respectively.
During the computation process, Bytesintra and Bytesinter data
are only required to be sent from the host to the FPGA during
the first Ex iteration. After that, the communication demand
(Bytesglobal and Bytesresults) for each Ex iteration is less than
35KB.

Under these definitions, we analyze the system’s perfor-
mance across various numbers of boards and communication
bandwidths. Fig. 18(a) displays the impact of different board
quantities on performance under 1000Mbps Ethernet. It can
be observed that when the number of Exhaustiveness iter-
ations required by Vina approximately exceeds the number
of boards, the performance is compute-bound. Otherwise, the
performance is ultimately communication-bound. Fig. 18(b)

shows how different communication bandwidths affect perfor-
mance with 4 boards. It can be concluded that communication
bandwidth is not the bottleneck of the proposed FPGA cluster,
presently, considering the huge workload of Vina computation
and the relatively small volume of data transmission.

VI. CONCLUSION AND FUTURE WORK

In this work, we present Vina-FPGA-cluster, an FPGA
cluster-based molecular docking acceleration tool. Building
upon our previous efforts, Vina-FPGA-cluster enhances dock-
ing precision through optimized fixed-point quantization data
formats, accelerates evaluation and design optimization via
a SystemC-based hardware model, and achieves optimized
speedup by refining the innermost iterative algorithm. Ex-
perimental results demonstrate that compared to the state-
of-the-art CPU and FPGA (Vina-FPGA) platforms, our im-
plementation achieves an acceleration of 27.33ˆ and 7.26ˆ,
respectively. Compared to the most advanced GPU (Vina-
GPU) deployments, our system consumes only 28.99% of the
power while delivering 1.38ˆ performance. In future work, we
plan to further optimize the computational flow of Vina-FPGA,
aiming to enhance the efficiency of different computational
modules and reduce idle time.

Future work involves further optimizing and expanding
Vina-FPGA-cluster with two primary objectives: (1) Revise
the Vina software application to support virtual screening
similar within Vina-GPU2. This adaptation will enhance the
tool’s utility in large-scale drug discovery efforts. (2) We plan
to develop a new microarchitecture that facilitates pipeline
between different computational modules, thereby improving
the operational efficiency of the processing units. These ad-
vancements aim to refine Vina-FPGA-cluster’s performance,
aligning it more closely with cutting-edge computational needs
in bioinformatics.

APPENDIX

Table VII presents the variable names, counts, and data bit
widths for the data communicated between the CPU and FPGA
during initialization, where ID1-ID23 represent global data.
Table VIII presents the meanings of the data communicated
between the CPU and FPGA during initialization.

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3388323

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Vrije Universiteit Brussel. Downloaded on October 02,2024 at 08:36:49 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, DECEMBER XXXX 15

TABLE VII: The list of initialized data sent from CPU to FPGAs

ID Name Entry Number Bits for each entry ID Name Entry Number Bits for each entry
1 lim 3 ˆ 1 7 14 atom Natom ˆ 3 18
2 m factor inv 3 ˆ 1 18 15 relative origin (Ntorsion+1) ˆ 3 18
3 m factor 3 ˆ 1 18 16 relative axis (Ntorsion+1) ˆ 3 18
4 m init 3 ˆ 1 18 17 parent root Ntorsion+1 6
5 num torsion 1 ˆ 1 6 18 children map 32 ˆ 32 1
6 num coords 1 ˆ 1 7 19 atom range (Ntorsion+1) ˆ 2 7
7 atoms el Natom ˆ 1 5 20 derivative table 313803 ˆ 1 14
8 table Natom ˆ 1 5 21 Position 3 ˆ 1 18
9 pair atom 1 ˆ 1 12 22 Orientation 4 ˆ 1 18
10 a Npair-atom ˆ 1 7 23 Torsion Ntorsion ˆ 1 18
11 b Npair-atom ˆ 1 7 24 Intra-molecular energy table 313803 ˆ 1 14
12 type Npair-atom ˆ 1 8 25 Inter-molecular energy table 281515 ˆ 17 14
13 coords Natom ˆ 3 18

TABLE VIII: The list of notes for initialized data

ID Note ID Note
1 The size of the search space 14 The absolute coordinates of ligand atoms
2 The invert scaling factor of the search space 15 The current sub-root node minus its parent root node
3 The scaling factor of the search space 16 The normalization of the current sub-root node minus its parent node
4 The starting position of the search space 17 The coordinates of the parent root node
5 The number of torsions 18 The child node information of various nodes
6 The number of atoms 19 The range of variation for the Torsion part of the ligand.
7 The types of atoms 20 The lookup table for intra-molecular derivatives
8 The index ID for lookup 21 Initial Position
9 The number of active ligand atom pairs 22 Initial Orientation
10 The index IDs of two neighboring atoms 23 Initial Torsion
11 The index IDs of two neighboring atoms 24 The lookup table for intra-molecular energy
12 The types of atom pairs with forces acting 25 The lookup table for inter-molecular energy
13 The initialization of coordinates
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