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Abstract—Symmetric Sparse Matrix-Vector Multiplication
(SSpMV) is a prevalent operation in numerous application
domains (e.g., physical simulations, machine learning, and graph
processing). Existing researches focus on the SSpMV imple-
mentation and its improvement on high-performance computing
platforms but ignore the resource-limited edge platforms due
to the main challenges: memory access overload and limited
computing parallelism feasibility. To this end, this paper proposes
an embedded-FPGA-based hardware accelerator for SSpMV,
called eSSpMV. We first propose an optimized data format,
named Symmetric Compressed Sparse Row (SCSR), to reduce
memory consumption. Moreover, a fully-pipelined computation
unit is proposed to be compatible with the optimized data format.
Experimental results show that eSSpMV outperforms the state-
of-the-art FPGA implementation for 2.9ˆ speedup, while still
achieving a computing resource reduction of 39.3% and 32.3%
for LUT and DSP, respectively. As for edge CPU and GPU
implementations, eSSpMV achieves 9.3ˆ speedup over CPU
while acquiring 13.1ˆ better power latency product than GPU.

I. INTRODUCTION

Symmetric Sparse Matrix-Vector Multiplication (SSpMV),
the computational core of various algorithms (e.g., SVM
[1], tensor-train decomposition [2], and quasi-newton method
[3]), is successfully improved on high-performance computing
(HPC) platforms [4, 5] for physical simulation, machine
learning, and graph processing. However, directly deploying
this HPC-targeting unit on edge devices is not ideal due to
limited resources. Therefore, in order to deploy SSpMV in a
manner of energy-efficient, embedded FPGA (eFPGA) is the
ideal candidate platform among various resource-limited edge
devices due to the flexibility and parallelism [6, 7].

Previous FPGA-based studies usually aim to improve data
access efficiency. In [8], the sparse matrix is encoded in Sparse
Symmetric Skyline (SSS) format to achieve data compression.
Other researches rely on the high-bandwidth memory (HBM)
technology [9–11], available only on advanced FPGA but not
for edge-computing scenarios, to increase memory access for
parallelism demands. However, the above works are far from
meeting the demands of efficient deployment of SSpMV. The
key challenges can thus be derived as: (1) traditional sparse
storage formats (e.g., CSR, CSC, and COO) have low utiliza-
tion of memory bandwidth, due to the random data accesses
in parallel SSpMV computation [12]; (2) Designing efficient
parallelism is difficult on resource-limited edge devices, for
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the existing works of SSpMV rely on HBM or other complex
load balancing modules.

To this end, we propose an eFPGA-based hardware ac-
celerator for symmetric sparse matrix-vector multiplication
(eSSpMV), in order to make full use of the restricted memory
bandwidth, and to maximize parallelism within limited compu-
tation resources to gain high utilization ratio. Our contributions
are listed as follows:

Efficient Architecture: We first propose an optimized
Symmetric Compressed Sparse Row (SCSR) storage format
to reduce the overload of memory access. An eFPGA-based
hardware accelerator with computation unit (CU) for SSpMV
is then designed, based on SCSR, with multiple hardware
threads to further explore parallelism design, which leads to a
high DSP efficiency of up to 97.94%.

High Performance: Experimental results show that the
eSSpMV achieves 2.9ˆ speedup compared with the state-
of-the-art (SOTA) FPGA implementation, and still obtains a
resource reduction of 39.3% and 32.3% for LUT and DSP,
respectively. eSSpMV is also 9.3ˆ faster than edge CPU
implementation and 13.1ˆ energy-efficient than edge GPU
implementation on average.

II. BACKGROUND AND MOTIVATION

A. Background
Symmetric Sparse-Matrix is a special variation of sparse

matrix where api, jq “ apj, iq for all i and j. The matrix can
thus be divided diagonally into two components called upper
and lower triangular parts, either of which can be determined
from the other one. To avoid lots of meaningless operations
that waste computation resources, various compression meth-
ods have been proposed.

The CSR format is shown in Fig.1(b), which is a commonly
used representation for sparse matrices [13]. CSR uses three
arrays to represent the matrix. value, col index, and row index
store the non-zero elements, the column indices of non-zero
elements, and the starting index of each row, respectively.

The other widely used storage format is the SSS format
[14], a variation of the CSR, as shown in Fig.1(c). SSS stores
the lower triangular part of the matrix and the main diagonal
of the matrix in separate arrays in order to increase the data
compression rate. Note that the SSS format pads the main
diagonal with zeros if it is not fully occupied.

B. Motivation
Computation under SSS format often encounters too much

zero padding when the main diagonal is not fully occupied,
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Fig. 1. Overview of the edge symmetric sparse-matrix multiplication (eSSpMV). (a) Symmetric sparse-matrix; (b) CSR format; (c) SSS format; (d) SCSR
format; (e) The block diagram of the eSSpMV; (f) The block diagram of the dispatcher & cache2.

resulting in inefficiency. Moreover, multi-thread operation en-
larges the inefficiency of repeating the main diagonal compu-
tation. Previous works implemented on multi-core systems or
utilize the HBM technology, without considering the limitation
of power consumption and computation resources, which
means they cannot be deployed on resource-constrained edge
platforms. Furthermore, both CSR and SSS are data-dependent
to the access of matrix values, thus making them not suitable
for fully-pipelined streaming FPGA designs. Also given the
lack of a built-in hardware prefetcher, hiding the memory
controller latency is crucial [15].

Therefore, for potential applications on edge platforms with
limited resources, especially on eFPGAs, we aim to deploy
SSpMV with high performance and low power consumption.
Meanwhile, an analysis model is proposed to complete the
exploration of design space efficiently and automatically.

III. EDGE SSPMV
A. SCSR format

The key to computing SSpMV efficiently is optimizing
memory access and parallelism. For memory access, it is nec-
essary to use an appropriate matrix format. We optimize and
propose the SCSR format by combining SSS with an existing
CSR method [16]. It stores matrix information using three
arrays, value, col index, and row length, as shown in Fig. 1(d).
The value array utilizes the symmetry features to further save
storage place, by storing only non-zero elements of the upper
part and the main diagonal without filling zeros. col index and
row length store the column indices of the non-zero elements
and the number of non-zero elements in each row, respectively.
In addition, row length helps quickly determine whether or not
the current row is computed. Although the compression rate
of SCSR is lower than SSS, the improved format can be well
applied to hardware parallel pipeline computing.

B. Proposed eSSpMV

eSSpMV Architecture: We make full use of the parallelism
of FPGA, and simultaneously complete multiple vector multi-
plication operations with the same data input. Our computation

units are denoted as CU, of which the specific design is also
shown in Fig. 1(e). In terms of structure, the main modules
of an initial CU include multipliers, adders, MUXs, and Dual
BRAMs. Our design utilizes four 128-bit HP ports to transfer
data between DDR and eSSpMV. Due to the symmetry,
multiplications of the upper and lower part can be done in
parallel, with only one of them being stored. Specifically, the
multiplier for the upper triangular is the vector value indexed
by the col index, while those for lower part are indexed by
the row length. Then, for the upper triangular part, the MUX
determines whether to continue the accumulation or output to
the next stage based on the value of row length. For the lower
triangular part, its column address can be retrieved from the
index of row length of the upper part. Correspondingly, the
row address of the lower part is derived from the col index.
Thus, values that have the same column address are com-
puted, accumulated, and then updated in BRAM immediately.
Eventually, all the values of the same column are computed
and thus to obtain the result for one row of the lower part.
The corresponding lower part is certainly completed by the
time the upper part reaches the last adder, which also shows
the advantages of storing only the upper part. Each of these
modules has an enable port and a gated clock to ensure that
modules work only when necessary, in order to further save
power consumption. Our design can avoid conflicts of the main
diagonal elements because we use row length to determine
whether the current row operation is finished.

Parallel Design of eSSpMV: The proposed CU can be
reconfigured to process vectors in mixed-grained parallelism,
where fine-grained means the number of DSPs within one CU,
and coarse-grained implies the number of CUs.

The essence of fine-grained parallelism is to multiply the
number of DSP in a CU, which is similar to the unrolling
operation in High-Level Synthesis. It is achieved given the
premise that the operations of the values in value and vector
are separated, just as stated in the previous introduction of a
single eSSpMV. Therefore, after the fine-grained parallelism
is processed, the number of cache access channels is precisely



Algorithm 1: Pipeline based parallelization

1 Initialize CU rns & Rowrms

2 for i ď n do
3 CU ris = Rowris;

4 j = n
5 while j ă length(Row) do
6 for i ď n do
7 CU ris = CU ris - 1;
8 if CU ris == 0 then
9 CU ris = Rowrjs;

10 j “ j ` 1;
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Fig. 2. Different parallelization strategy. (a) A symmetric sparse matrix;
(b) Row-based parallelization; (c) Ideal parallelization; (d) Pipeline based
parallelization.

the multiple of the DSPs. Considering the large variation in the
number of elements between rows, the number of DSPs in one
CU is particularly considered to reduce the DSP efficiency.

Coarse-grained parallelism is to duplicate a single CU
design into multiple CUs. During the process, two challenges
are involved: memory access and the imbalance across rows.
For the memory access problem, new advanced FPGAs (e.g.,
Xilinx Zynq MPSoC) support multiple memory interfaces
that enable parallel memory access mechanisms for multiple
computational hardware modules [17]. Hence, we divide the
rows in a sparse matrix into different regions. As shown in
Fig.1(f), each CU has a private cache1, and all the CUs
share a public cache2. This design guarantees a fully-pipelined
streaming after the coarse-grained parallelism. The cache2
is similar to a two-dimensional first-in-first-out (FIFO) with
multiple ports, and its largest size would be the number of
CUs and the largest dimension for the matrix. When a CU is
about to finish the computation, the shared cache2 is informed
and then assigns its top-row data to the CU’s private cache1
and request for a new row of data to be updated at its
bottom. In this way, the data access of eSSpMV is significantly
reduced. The notification from CU to cache2 is achieved as
the row length data in the SCSR can be used as the flag for
the computation.

To address the imbalance across rows, our design is
shown in Fig.2. Considering the symmetrical sparse matrix
in Fig.2(a), where the colored squares represent non-zero
elements. With 3 CUs or threads for computing, previous
methods shown in Fig.2(b) [18, 19] can hardly avoid the
imbalance across rows, resulting in a waste of resources and
power consumption. The ideal solution [20, 21] to balance
the rows is shown in Fig.2(c). However, it requires analysis
and packaging of the whole data and consumes significant

TABLE I
COMPARISON WITH OTHER SSPMV DESIGNS OF RESOURCE UTILIZATION

[23]
(2020) eSSpMV

FPGA ZYNQ XCZU9EG ZYNQ XCZU7EV
Frequency (MHz) 200 250

Data precision (bit) FP32 FP32
Max. matrix size 50000 50000

LUT 5755 3494
FF 4385 5621

BRAM N/A 61.5
DSP 1512 1024

GFLOPS 2.5 3.2

computing resources. Therefore, we adopt a pipeline-based
method as indicated in Algorithm 1. The key to this method
is a subset sum problem according to [22]. As shown in the
example of Fig.2(d), n rows of data are assigned to n CUs.
After a CU completes its task, it is immediately filled by the
n`1 row of data for the computation. In this process, the non-
zero elements in each row gradually decrease since the matrix
is upper-triangular, for which the workload between different
CUs is balanced, to a certain extent. It thus significantly
alleviates the problem, although cannot entirely solve the
imbalance for extreme cases where the number of non-zero
elements varies greatly. Moreover, it does not require the pre-
processing of the whole matrix at all or a separate design of
the dispatch module. An evaluation of the design performance
is presented in the next Section.

IV. EXPERIMENTS

A. Experimental Setup

We deploy the eSSpMV with 32-bit data width on Xilinx
Zynq XCZU7EV FPGA in the customized boards. For basic
comparison, we choose the SOTA design (only one is proposed
for edge device) [23], with its target board (Zynq XCZU9EG)
in a fast-stream mode that supports sparse symmetric matrix.
We also compare our design with typical edge devices, in-
cluding ARM A53 CPU on Raspberry pi 3B, ARM A72 CPU
on RK3399PRO, and NVIDIA GPUs on Jetson Xavier NX.
In order to perform parallel processing on the ARM CPU
platform, we use the Armadillo library [24] and Tengine [25]
to deploy parallel processing of sparse symmetric matrix. On
the GPU platform, the CUDA with cuSPARSE library is used
to realize parallel processing [26]. The power consumption is
measured by PN2000 electricity usage monitor [27, 28]. For
evaluation, we use 10 SSpMs with various matrix dimension
sizes and different numbers of non-zero elements, which are
all from the University of Florida sparse matrix collection [29].
Their dimensions and the numbers of non-zero elements range
from 48 to 41,731 and 400 to 1,317,655, respectively.

B. FPGA Deployment Results

We complete the eSSpMV deployment in 128 CUs while
the number of multipliers (2ˆ DSP48E2) per CU is 4. A
comparison of the resource consumption between SOTA and
our deployment is shown in Table I, in which our work exhibits
a computing resource reduction of 39.3% and 32.3% for LUT



Fig. 3. Comparison with edge platforms. (a) Speedup ratio comparison; (b) Improvement ratio of energy efficiency comparison.

Fig. 4. The DSP efficiency across 10 datasets.

and DSP, respectively. The relatively low resource consump-
tion leaves sufficient design space for complete operational
systems (e.g., SVM or Quasi-Newton method), which meets
eSSpMV design purpose as a basic computation unit.

C. DSP efficiency
The problem of row imbalance exists in these architectures.

Hence, it is necessary to discuss the efficiency of DSP to
examine the dispatching mechanism of Algorithm 1. The DSP
efficiency is calculated as follows:

DSP EFF “
OP DSP Cycle num

TEST Cycle num ˆ DSPnum
, (1)

where OP DSP Cycle num means the cycle of DSP oper-
ating none zero data. The DSP efficiency of eSSpMV in 10
datasets is shown in Fig.4. eSSpMV achieves excellent results
in the range from 92.38% to 97.94% on almost all datasets,
only except the worst case on the dataset of bcsstk05 due
to two reasons: 1. bcsstk05 has a great number of non-zero
elements, which definitely leads to idle computation cycles;
2. There is a significant variation in the number of non-zero
elements across rows. However, we believe that mechanism of
our design is still generally effective for resource-limited edge
devices. It is also worth mentioning that this mechanism also
saves resources as it only depends on the data of row length
and does not require analyzing the distribution of non-zero
elements in the matrix beforehand.

D. Comparison with Edge Platforms
We compare the speedup ratio shown in Fig. 3(a) with ARM

A53 [30] as the baseline. eSSpMV performs on average 2.9ˆ

faster than fast-stream (unroll set to 4). This is because fast-
stream runs at a lower frequency than eSSpMV and has a
deeper pipeline depth. Also, there are lots of empty data in the
actual operation, which means that unroll=4 is not a complete
parallel operation. In addition, the fast-stream design is based
on CSR format. It fills 0 in specific positions to ensure the
operation is correct, which makes several operations redun-
dant. Compared with CPU, eSSpMV shows 9.3ˆ speedup on
average. For GPU comparison, eSSpMV gets an advantage
under matrix size below 5, 000. It is also very close to GPU
by exploiting parallelism. GPUs benefit from utilizing a large
number of hardware threads and coalesced memory access,
therefore they gain advantages in huge matrix processing.

We compare the energy efficiency of our design on differ-
ent platforms in Fig.3(b). The improvement ratio of energy
efficiency is defined as follows:

IMP ENG EFF “
PLPtarget

PLPA53
, (2)

where the PLP means the value of useful power-latency-
product [31], denoted as below:

PLP “ Power consumptionpmW q ˆ Latencypmsq. (3)

Following the above definition, eSSpVM shows 23.7ˆ, 13.1ˆ

higher energy efficiency compared with edge CPU and
edge GPU implementation, respectively. Compared with fast-
stream, eSSpMV the improvement ratio is 3.0ˆ instead.

V. CONCLUSION
In this paper, we present eSSpMV, an eFPGA-based hard-

ware accelerator for symmetrical sparse matrix-vector mul-
tiplication. With an improved SCSR format and parallelism
features, eSSpMV resolves the challenge of inefficient ran-
dom memory accessing while acquiring up to 97.94% DSP
efficiency. eSSpMV achieves up to 2.9ˆ speedup than the
SOTA with lower power consumption, averagely 9.3ˆ faster
than edge CPU devices, and 13.1ˆ more energy-efficient than
edge GPU devices. For future work, there is a vast design
space in the configuration of the number of DSPs in a single
CU and the number of CUs in eSSpMV. An analytical model
for automatically exploring eSSpMV deployment strategies
under complicated constraints will be designed.
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