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Abstract—Multiplication is a core operation in modern neural
network (NN) computations, contributing significantly to energy
consumption. The linear-complexity multiplication (L-Mul) algo-
rithm is specifically proposed as an approximate multiplication
method for emerging NN models, such as large language model
(LLM), to reduce the energy consumption and computational
complexity of multiplications. However, hardware implementa-
tion designs for L-Mul have not yet been reported. Additionally,
8-bit floating-point (FP8), as an emerging data format, offers
a better dynamic range compared to traditional 8-bit integer
(INT8), making it increasingly popular and widely adopted in NN
computations. This paper thus presents a power-efficient FPGA-
based hardware implementation (approximate FP8 multiplier)
for L-Mul. The core computation is implemented using the
dynamic reconfigurable lookup tables and carry chains primitives
available in AMD Xilinx UltraScale/UltraScale+ technology. The
accuracy and resource utilization of the approximate multiplier
are evaluated and analyzed. Furthermore, the FP8 approximate
multiplier is deployed in the inference phase of representative
NN models to validate its effectiveness.

Index Terms—Approximate computing, multiplier, FPGA, FP8

I. INTRODUCTION

In recent years, the rapid development of neural network
(NN) has brought the issue of high energy consumption to the
forefront [1]. An effective approach to addressing this chal-
lenge is the use of approximate computing and quantization
techniques. Approximate computing simplifies key operations
in neural networks, such as multiplication and other nonlinear
functions. The emerging approximate multiply method, linear-
complexity multiplication (L-Mul) algorithm [2], has been
deployed on GPUs for large language models (LLM), provid-
ing initial validation of its effectiveness. As for quantization
techniques, they improve memory access and computational
efficiency [3], [4]. Among these, 8-bit floating-point (FP8)
numbers, compared to traditional 8-bit integer (INT8), offer
better dynamic range and computational precision, making
them widely adopted in neural network computations [5], [6].
To enhance the computational efficiency of FP8, specialized
hardware modules for FP8 acceleration have become a new
trend. For instance, designing application-specific integrated
circuits (ASICs) [7], [8] and integrating corresponding units
into GPUs [9].

As a fundamental computation in DNNs, various approxi-
mate multipliers have been proposed to improve efficiency and
reduce energy consumption. These multipliers are designed to
reduce latency, energy consumption, and area. Chen et al. [15]
proposed an optimally multi-level architecture that seamlessly
integrates runtime configurability with parallel module execu-

tion. An optimization strategy was applied to improve area
efficiency, achieving a linear relationship with accuracy rather
than the quadratic or exponential relationships seen in previous
works. Ansari et al. [13] developed an 8×8 approximate
multiplier tailored for NN designs by improving the design
of logarithmic multipliers. HEAM [14] achieves automated
design of approximate multipliers by minimizing the average
error based on operand distribution and integrates these mul-
tipliers into DNN accelerators. However, the aforementioned
approximation methods are primarily aimed at reducing power
consumption and area utilization in ASIC implementations and
may perform suboptimally on FPGAs. This is because FPGA
reconfigurable logic is typically based on fixed-size lookup
tables (LUTs). While FPGAs also integrate DSP hardware
multiplier units, these units are physically fixed and limited
in quantity. Therefore, improving the efficiency of LUT-
based multiplication in terms of speed, power consumption,
and resource utilization becomes particularly critical. Ullah
et al. [16]–[18] proposed a series of FPGA-based approxi-
mate multipliers covering data bit-widths from 4-bit to 32-
bit. More recently, their AxO series [19], [20] integrated
the design of approximate multipliers into SNN accelerators.
DyRecMul [21] introduced a dynamically reconfigurable INT8
approximate multiplier design, which includes a floating-point
conversion unit. This design enables efficient floating-point
conversion, reducing preprocessing operations and enhanc-
ing computational efficiency. Leon et al. [22] proposed a
DSP-based approximate multiplier design for floating-point
computations, which was integrated into a CNN accelerator.
This approach achieved more efficient computation within the
accelerator framework.

Although previous works have made efforts in FPGA-
based approximate multiplier designs, there is still a lack of
specialized approximate multipliers targeting the FP8 format.
Therefore, this paper present a power-efficient hardware im-
plementation for L-Mul and the main contributions include:

• We implement L-Mul, an approximate multiplication
method for FP8 computations, on FPGA. Using LUT and
carry-chain primitives, we achieve fine-grained optimiza-
tion to minimize resource usage and power consumption.
To the best of our knowledge, this is the first FPGA-based
FP8 approximate multiplier design.

• We validate our design on AMD UltraScale/UltraScale+
devices. Compared to previous FPGA-based 8-bit approx-
imate multiplier designs, our approach reduces resource
consumption by an average of 10% while maintaining
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comparable performance. Additionally, we integrate our
design into a CNN accelerator, and experiments demon-
strate that, among 8-bit designs, ours achieves the highest
accuracy, energy efficiency, and the lowest latency.

II. PRELIMINARIES

A. FP8 Formats

FP8 is a natural progression from the FP16 representations,
effectively reducing memory consumption and improving
memory access and computational efficiency [6]. Compared
to traditional INT8, FP8 offers a larger dynamic range (the
commonly used E4M3 format, as shown in Table I and
Fig. 1). Moreover, FP8 delivers good results for neural network
inference processes [12]. The FP8 format adheres to IEEE-754
conventions, where a real numbers is encoded using a 1-bit
sign S, an e-bit integer exponent E, and an m-bit fractional
(mantissa M ),

xDEC = (−1)S × 2E ×M, (1)

where E = e − bias and M = 1 + m. The bias in this
context varies with the number of bits in the exponent, and it
is determined by the following formula:

bias = 2e−1 − 1. (2)

Note that an implict 1, the hiddenbit, is concatenated to
the fraction as an integer bit, forming the significand. A FP
number with E = 0 has no implicit 1 in the significand so
zero and subnormal values can be represented. In addition,
exponent E=2e−1−1 is reserved for the representation of ±∞
and NaNs.

TABLE I
COMPARISON OF INT8 AND FP8 (E4M3)

Data Type INT8 FP8 (E4M3)
Bit Width 8 bits 8 bits

Minimum Value -128 -448
Maximum Value 127 448

Decimal Precision Fixed (1) Dynamic

0 1 0 0 1 1 1 10 1 0 0 1 1 1 1

Mantissa

(fraction)

3-bit

Exponent

4-bit

Sign

1-bit

0 0 0 0 0 1 1 10 0 0 0 0 1 1 1

Sign

1-bit

Digits

7-bit

INT8 FP8

Values BIN: {00000111}  DEC: 7 BIN: {01001111}  DEC: 7.5Values

MSB LSB LSBMSB

Fig. 1. The demonstration of the INT8 and FP8 (E4M3) defined in IEEE
754. MSB stands for most significant bit and LSB stands for least significant
bit.

B. FPGA Structure

State-of-the-art FPGAs from AMD (Xilinx) and Altera (In-
tel) utilize basic logic cells such as 6-input LUTs, carry chains,
multiplexers, and D flip-flops to implement both combinational
and sequential logic circuits. The typical structure of AMD’s
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Fig. 2. Typical AMD FPGA configurable logic block (CLB) structure [10].
(a) Logic cell within the CLB. (b) LUT6 structure. (c) Carry chain structure.

FPGA is presented as an example for design implementation.
However, the proposed methodology is generic and can be
implemented on FPGAs from other vendors, including Altera
and Anlogic, which also use 6-input LUTs, carry chains,
multiplexers, and D flip-flops.

A slice in the configurable logic block (CLB) of AMD’s
7-series and UltraScale/UltraScale+ FPGAs contains four
6-input LUTs (commonly referred to as LUT6 2), two
4-bit carry chains (a 8-bit carry chain within Ultra-
Scale/UltraScale+), eight flip-flops and multiplexers, as shown
in Fig. 2. A LUT6 2 can be used to implement either a single
6-bit combinational function, using the O6 output bit, or two
5-bit combinational functions, using the O5 and O6 output
bits, as shown in Fig. 2. This is done by defining an INT
value, which describes all the possible input combinations for
which a logic value ”1” is required at the output. For exam-
ple, an INT value of 0000000000000002 (hex) for LUT6 2
defines to produce outputs O5 = 1 and O6 = 0 for input
combination 100001. Besides the implementation of single 6-
bit combinational functions, these LUT6 2 are also used for
controlling the associated carry chain, as shown in Fig. 2.
The carry chain implements a carry-lookahead adder, using
O5 as the carry-generate signal and O6 as the carry-propagate
signal. The carry-generate signals for the carry chain can also
be provided by the external bypass signals AX – DX.

III. THE HARDWARE IMPLEMENTATION FOR L-Mul

A. L-Mul for FP8

According the introduction in Section II-A, the FP8 multi-
plication process can be represented as:

Mul(x, y) = (1 +mx) · 2Ex × (1 +my) · 2Ey

= (1 +mx +my +mx ·my) · 2Ex+Ey ,
(3)
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Fig. 3. Hardware fine-grained architecture for L-Mul.

the sign bit could be omitted, as it can be handled through an
XOR operation. Observing the above equation, it is evident
that for hardware circuit design, only mx · my involves a
multiplication operation. The remaining operations can be
implemented using addition or linear operations such as shift-
ing. To alleviate the potential bottleneck caused by mantissa
multiplication, Luo et al. [2] propose the L-Mul algorithm,
designed to approximate the FP8 multiplication process:

L-Mul(x, y) = (1 +mx +my + 2−l(m))× 2Ex+Ey ,

l(m) =

m if m ≤ 3,
3 if m = 4,
4 if m ≥ 4.

(4)

Where, m represents the bit-width of the mantissa. Using
this piecewise function approximation, the original multipli-
cation operation can be transformed into shift and addition
operations. In the following subsection, we introduce the
corresponding fine-grained FPGA-based hardware design.

B. Hardware Design

The combination of the L-Mul algorithm (Eq. 4) and the
FP8 format conversion relationships (Eq. 1 and Eq. 2) provides
the bit-level representation of the L-Mul algorithm in binary
operations:

L-MulBIN(x, y) =

(
1 +

x[m− 1 : 0] + y[m− 1 : 0] + 2l(m)

2m

)
× 2x[6:m]+y[6:m]−biasx−biasy .

(5)

To achieve this, we design five LUT configurations combined
with carry chains to implement the L-Mul FP8 approximate
multiplier, as shown in Fig. 3. The design primarily consists
of three parts: the Exponent-Adder, the Mantissa-Adder, and
the Post-Processing unit.

TABLE II
THE REPRESENTATION OF THE MANTISSA FOR DIFFERENT CARRY

[m+1,m] Mantissa
2’b00 1.xm

2’b01 10.xm

2’b10 11.xm

2’b11 100.xm

The Exponent-Adder and Mantissa-Adder are implemented
using LUT B and CARRY8. The Exponent-Adder includes
an m-bit adder and an m+1-bit adder, while the Mantissa-
Adder includes an e-bit adder and an e+1-bit adder. LUT B
primarily functions as a half-adder. The output O5 corresponds
to the sum (S). When the LSB of carry-in (CI) is 0, the
operation is O5 = add1 ⊕ add2. Otherwise the operation is
O5 = add1⊕(∼ add2). The output (O6) corresponds to the C
in a half-adder. In other words, O6 = add1 · add2. CARRY8
is used to implement addition operations. Each CARRY8 unit
contains eight basic units (CC), and each CC can combine
with LUT B to function as a full adder. The CI represents
the carry input from the previous stage. When the CC unit is
the LSB, CI = 0 indicates addition, while CI = 1 indicates
subtraction. The O corresponds to the sum (S) in the full
adder, calculated as: O = (add1⊕ add2)⊕ CI . In summary,
a total of N LUT B and CC units can be combined to form
an N-bit adder.

The Post-Processing Unit is primarily responsible for han-
dling the sign bit and managing the carry of the mantissa.
The LUT A is used to determine the sign bit of the product.
Specifically, it processes the bit of the inputs x[7] and y[7].
There might be a carry occur, requiring the carry value from
the mantissa to be added to the exponent. For the mantissa, we
follow the carry principles of typical FP multipliers, represent-
ing the mantissa in the form of 1.xm. The corresponding carry



TABLE III
THE bias∗ VALUES FOR DIFFERENT TYPES OF FP8 FORMATS

CORRESPOND TO SPECIFIC CONFIGURATIONS

FP8 Type [m+1,m] bias FP8 Type [m+1,m] bias

E6M1
2’b00 -31

E5M2
2’b00 -15

2’b11 -29 2’b11 -13
others -30 others -14

E4M3
2’b00 -7

E3M4
2’b00 -3

2’b11 -5 2’b11 -1
others -6 others -2

E2M5
2’b00 -1

E1M6
2’b00 0

2’b11 1 2’b11 2
others 0 others 1

handling is shown in Table II. When the carry value is 2′b00,
the final product’s mantissa is Pm[m − 1 : 0], and no carry
is added to the exponent. When the carry value is 2′b01, the
mantissa is represented as 10.xm, requiring the decimal point
to shift left by one position, i.e., the exponent is incremented
by 1. In this case, the mantissa is Pm[m − 1 : 0]. Similarly,
when the carry value is 2′b10, the exponent is incremented
by 1, and the mantissa becomes 1′b1, Pm[m− 1 : 1]. For a
carry value of 2′b11, the exponent is incremented by 2, and
the mantissa is Pm[m−1 : 0]. Since the product of 0 and any
number is 0, the final product’s mantissa and exponent can be
expressed using the following formulas

P ′
m[m− 1 : 0] =


0, zero = 1

{1′b1, Pm[m− 1 : 1]}, Pm[m+ 1 : m] = 2′b10

Pm[m− 1 : 0], others
(6)

P ′
e[e : 0] =


0, zero = 1

Pe, Pm[m+ 1 : m] == 2′b00

Pe + 2, Pm[m+ 1 : m] == 2′b11

Pe + 1, others.

(7)

To reduce the usage of adders, we combine the bias with
various carry scenarios from Table II and treat it as a constant,
bias∗. The corresponding values are shown in Table III.
LUT C, LUT D, and LUT E are used to implement
Equation 6, 7, and the remaining corresponding operations.
These operations compute the final product’s exponent bits, the
highest mantissa bit, and the remaining mantissa bits excluding
the highest bit, respectively.

To enhance the performance of the FP8 approximate mul-
tiplier, we implemented the hardware design using LUTs and
carry chain primitives. Furthermore, to shorten the connection
paths between LUTs and carry chains, we applied strict
physical placement constraints. Specifically, as described in
Section II-B, each carry chain can connect directly to four
LUTs. Therefore, we constrained the physical placement at
the CLB level, ensuring that the LUTs are connected to the
carry chain within the same CLB. The input FFs are placed in
adjacent CLBs to guarantee the shortest possible data paths.

TABLE IV
ERROR EVALUATION OF L-Mul ACROSS DIFFERENT FP8 FORMATS

Data type EP MAE MRE MSE NED
E6M1 1 2.1×1015 0.319 2×1033 0.001
E5M2 0.938 8.58×105 0.111 9.12×1013 0.002
E4M3 0.968 141 0.068 7.56×105 0.005
E3M4 0.992 3.04 0.069 90.7 0.019
E2M5 0.997 0.991 0.072 3.23 0.076
E1M6 0.999 0.765 0.073 1.18 0.218

IV. RESULTS AND DISCUSSION

A. Experimental setup

We first evaluate the error of L-Mul using five metrics: Error
Probability (EP), Mean Absolute Error (MAE), Mean Relative
Error (MRE), Mean Squared Error (MSE), and Normalized
Error Distance (NED). For unsigned arithmetic, these metrics
are defined as follows:

EP =
1

2N

2N−1∑
i=0

EDi ̸= 0, (8)

MAE =
1

2N

2N−1∑
i=0

EDi, (9)

MRE =
1

2N

2N−1∑
i=0

EDi

Exacti
, (10)

MSE =
1

2N

2N−1∑
i=0

(EDi)
2, (11)

NED =
1

2N

2N−1∑
i=0

EDi

max(ED)
. (12)

Then, We use Verilog for the L-Mul FP8 approximate
multiplier design and use AMD Vivado 2022.2 for logic
synthesis and placement constraints. The design is deployed
and validated on the ZCU104 Evaluation Kit of UltraScale+
FPGA. We perform multiple synthesis iterations, applying
different critical path constraints in each iteration to implement
each design multiple times. This approach ensures accurate
measurements of area and maximum operating frequency.
The Vivado simulator and power analysis tools are used to
calculate dynamic power consumption. As this is the first
FPGA-based FP8 approximate multiplier design, we ensure
fairness by selecting previous FPGA-based INT8 approximate
multipliers for comparisons of resource consumption, power
consumption, and critical path delay. Finally, we deploy the L-
Mul FP8 approximate multiplier on 2 typical DNN accelerators
to validate its superiority in terms of energy efficiency.



Fig. 4. The normalized number of unique error occurrences under different
FP8 formats.

TABLE V
HARDWARE IMPLEMENTATION RESULTS OF L-Mul FOR DIFFERENT FP8

FORMATS

Data type LUT FF CARRY8/4 WNS (ns)
E6M1 22 25 4 1.65
E5M2 21 25 4 1.64
E4M3 22 25 4 1.62
E3M4 22 25 4 1.64
E2M5 23 25 4 1.71
E1M6 22 25 4 1.76

B. Error Evaluation

Table IV presents the error metrics of L-Mul in different
formats of FP8. It is important to note that when the exponent
is allocated a larger bit-width, the range of representable
numbers increases, which can lead to significantly larger
MAE and MSE values due to the greater magnitude of
errors. Moreover, to provide a more intuitive representation
of the normalized number of unique error occurrences for the
proposed multipliers, we visualize the data in Fig 4.

C. Hardware Implementation and Evaluation

We use Verilog to implement the L-Mul hardware design
for different FP8 formats, as described in Section 3. The
corresponding resource consumption and latency for each
format is collected from AMD Vivado 2022.2 and shown
in Table V. It can be observed that our design consumes
an average of fewer than 23 LUTs. To further highlight the
advantages of our design in terms of resource utilization and
power consumption, we compare it with previous FPGA-
based approximate multipliers and AMD’s IP core. We use
the deployment results under the E4M3 format, which is the
most commonly used FP8 format. Although the multiplication
rules for FP8 and INT8 differ, we consider this comparison
valuable due to their identical data bit-width. Table VI presents
the comparison results. For each item, it can be observed that
our design exhibits the lowest resource consumption. Addi-
tionally, compared to the FP8-compatible RR DyRecMul [21],
our design achieves a lower delay. The fastest frequency,
reported in [24], benefits from the simplicity of unsigned INT8
operations. It is important to note that references [23], [17],
and [18] are implemented on AMD-Xilinx 7-series FPGAs,

TABLE VI
IMPLEMENTATION RESULTS OF DIFFERENT 8-BIT MULTIPLIERS

Designs LUTs Max Frq (MHz) Delay (ns) Power (mW)
Ours

(FP8 E4M3) 22 617 4.85 1.34

Ullah [23]
(INT8 Unsigned) 56 / 6.95 1.68

Van Toan [24]
(INT8 Unsigned) 59 759 4.65 0.432

Ullah [17]
(INT8 Unsigned) 37 / 3.41 /

Ullah [18]
(INT8 Signed) 54 / 4.37 1.66

RR DyRecMul [21]
(FP8 to INT8 Signed) 35 699 5.72 /

AMD-Xilinx
(Exact) 69 730 3.54 2.32

Fig. 5. The Pareto analysis under area and latency.

which introduces some power consumption differences. Ad-
ditionally, the power data from [24] is recorded at 100 MHz,
which is significantly lower than the results from other designs
running at their maximum frequencies. To better demonstrate
the power-efficiency advantages of our design, we performed
a Pareto analysis to visually illustrate the differences between
our design and others, as shown in Fig. 5. It shows that our
design lies on the Pareto frontier. Additionally, due to its
outstanding power-efficiency, our design achieves the second
smallest Power-Delay Product (PDP) among the compared
implementations.

D. Deployment and Evaluation on Computation of DNN Mod-
els

To further validate the performance and power efficiency of
our design, we integrate it into both a CNN accelerator and
a GCN accelerator. We evaluate inference accuracy on three
representative CNN datasets (MNIST, CIFAR-10, and Ima-
geNetV2) and three typical GCN datasets (CORA, CiteSeer,
and Pubmed). Table VII shows the average accuracy loss for
the corresponding models under different data formats. FP8,
with its superior dynamic range, incurs the least accuracy loss.
Although L-Mul exhibits the highest accuracy loss, it elimi-
nates multiplication operations, achieving significantly better
hardware deployment efficiency. We design CNN inference
accelerators based on INT8 and L-Mul (FP8, E4M3) using
the quantization parameters shown in Table VII, with Faster
R-CNN as the backbone network. The resulting resource



TABLE VII
EVALUATION OF ACCURACY LOSS FOR DIFFERENT DATA FORMATS

ACROSS VARIOUS DNN MODELS

Models FP32 FP8 (E4M3) INT8 L-Mul (E4M3)
CNN 0 -0.04% -0.10% -0.96%
GCN 0 -1.96% -2.77% -3.01%

TABLE VIII
COMPARISON OF HARDWARE DEPLOYMENT FOR NN MODEL INFERENCE

USING DIFFERENT MULTIPLIERS

Multiplier Model LUT DSP Power (W)
INT8

(Exact)
CNN 117,067 1,156 9.46
GCN 161,529 512 8.61

Ours
(FP8, E4M3)

CNN 143,702 0 8.08
GCN 173,387 0 8.23

consumption and power usage are shown in Table VIII. Thanks
to the approximate multiplier design, we achieve a DSP-free
implementation and reduce power consumption by 14.59%
at the same operating frequency (250 MHz). Similarly, we
implement a GCN inference accelerator based on L-Mul (FP8,
E4M3) using LW-GCN (INT8) [25]. This design also achieves
a DSP-free implementation at the same operating frequency
and reduces overall power consumption.

V. CONCLUSIONS

This paper presents a power-efficient hardware deployment
for the L-Mul algorithm. By analyzing the CLB structure of
AMD FPGAs, we achieve fine-grained optimization through
primitive-based design. We demonstrate and analyze the de-
ployment results for FP8, showing that our design achieves
the lowest LUT consumption and power usage compared to
other 8-bit designs. Furthermore, we deploy our design in the
inference phase of typical NNs, validating its effectiveness
and power efficiency. In the future, we plan to integrate this
design into LLMs and diffusion model to further demonstrate
its advantages.
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