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this, we introduce and analyze a variety of state-of-the-art FPGA-based accelerators tailored for SpMMs. In
addition, a comparative analysis of these accelerators is performed, examining metrics including compression
rate, throughput, and resource utilization. Finally, we propose potential research directions and challenges for
further study of FPGA-based SpMM accelerators.
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1 Introduction
Sparse Matrix Multiplication (SpMM) plays[1pc] a crucial role in numerous scientific andHigh-
Performance Computing (HPC) applications, such as image processing [2, 3], deep learning
[49], physics simulation [45], molecular dynamics [27], and several other fields.
Currently, numerous studies focus on accelerating SpMM on platforms such as CPU, GPUs,

Field-Programmable Gate Arrays (FPGAs), and Application-Specific Integrated Circuits
(ASICs) [14].

CPU, as a general-purpose computing platform, is often the first choice for deploying and
accelerating SpMM computations. Advanced CPUs have a few high-performance cores, with
advantages in executing complex control flows, supporting a wide range of instruction sets, and
handling multitasking. Several optimizations for accelerating SpMM on CPUs have been proposed.
Gu et al. [18] developed the PB-Sparse Matrix-Matrix Multiplication (SpGEMM) algorithm
based on the outer product, which can saturate memory bandwidth by using propagation blocking
techniques and performing in-cache sorting and merging. Chen et al. [7] designed a partitioning
and parallelization method for Compressed Sparse Row (CSR)-based SpGEMM tailored to the
Sunway architecture. Elliott and Siefert [15] proposed a single-channel OpenMP variant based on
the Gustavson algorithm to handle matrix squaring computations.

GPUs consist of over thousands stream processors and are well-suited for data-intensive parallel
computing. Benefiting from the excellent parallel computing capabilities, GPUs have evolved from
initially accelerating general matrix multiplication operations to becoming the focus of specific
SpMM optimizations [31]. Liu et al. [41] proposed three register-aware optimization techniques
to enhance SpGEMM performance, covering representative parallel primitives, namely sorting,
merging, and hashing. Deveci et al. [12] described a data placement method and a block-based
algorithm that utilizes the multiple memory spaces present in each hardware platform. Parger et al.
[50] proposed a lightweight, multilevel matrix analysis that dynamically selects and adjusts the
best-fitting algorithm for each row of the matrix.
ASICs are often regarded as a candidate to accelerate SpMM, too. For instance, OuterSPACE

[48] proposed a reconstructed memory hierarchy that reduces traffic to the main memory. Gamma
[70] utilized dynamically scheduled Processing Elements (PEs) with efficient high-radix merge
capabilities to achieve high throughput. SpArch [71] designed a stream-based merging approach
to optimize data reuse. MatRaptor [59] introduced a new sparse storage format, Cyclic Channel
Sparse Row [C2SR], enhancing memory bandwidth utilization through vectorization and stream
access.

However, the irregular distribution of nonzero elements in sparse matrix limits the performance
and energy efficiency of SpMM on general-purpose computing platforms such as CPUs and GPUs.
Specifically, the access pattern to nonzero elements is irregular, necessitating a highly optimized and
efficient storage and access mechanism. For CPUs and GPUs with fixed memory hierarchies, it is
challenging to optimize this type of irregular and intensive task. Moreover, SpMM requires handling
a significant amount of intermediate results during computation, which leads to frequent off-chip
memory accesses. This further increases computational latency and limits overall computational
performance. As for ASICs, once the design is complete, the architecture is fixed. Consequently,
ASICs lack flexibility and cannot be redeveloped or modified, making their deployment difficult for
small-scale or rapidly changing applications [1].
The success of FPGAs in HPC applications has made them an increasingly popular choice for

hardware acceleration platforms [9]. Compared to traditional CPUs, GPUs, and ASICs, FPGAs
offer several advantages, including flexible data paths, low latency, reconfigurability, and higher
energy efficiency [29]. Developers can customize data paths to precisely match the data access and
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processing patterns of sparse matrices. By optimizing these data paths and minimizing unnecessary
data access, computational efficiency is significantly enhanced. Additionally, the reconfigurability
of FPGAs provides high adaptability to the rapid evolving parameters and algorithms. As in the
most common application of SpMM [31], neural network inference, new quantization methods,
compression formats, and model architectures are being proposed. It suggests designers need to
fine-tune data paths and microarchitectures to accelerate the SpMM computations in accordance to
these methods [22, 54].
Therefore, FPGAs are a suitable candidate for hardware acceleration of SpMM. For instance,

Spaghetti [22] introduced an FPGA-based SpMM hardware generator and a deployable prototype,
offering high input reuse of nonzero values. Sextans [58] is another SpMM architecture based on
outer product implementation, maximizing the use of PEs and improving load balancing. eSSpMV
[5] targets symmetric sparse matrices, enhancing random memory access efficiency through an
improved Symmetric Compressed Sparse Row (SCSR) format in conjunction with a data access
module. Serpens [57] implemented a general-purpose Sparse Matrix-Vector Multiplication
(SpMV) accelerator on an FPGA with High-Bandwidth Memory (HBM).

Although the primary focus of this article is to review FPGA-based SpMM accelerators, it is
also essential to highlight the foundational role that SpMV accelerators play in this field. SpMV
can be considered a special case of SpMM, where the inner and outer product computations are
essentially SpMV operations. Therefore, the study of SpMV reveals the intrinsic challenges of
sparse matrix computations, such as load imbalance and memory access efficiency issues, and
provides a wealth of strategies and techniques to overcome these challenges. Many optimization
techniques developed for SpMV, including innovations in storage formats, load balancing, and
improvements in memory access patterns, offer valuable insights and inspiration for the design
of SpMM accelerators. As a result, while presenting SpMM accelerators, this article also reviews
relevant SpMV accelerators. This dual focus aims to establish a robust theoretical and practical
foundation for better understanding and advancing FPGA-based SpMM accelerators. By examining
the relationship between SpMV and SpMM, and the ways in which SpMV research informs SpMM
accelerator design, we aim to provide a comprehensive context for the discussions and findings
presented in this article.

Accelerating SpMM on FPGAs, however, is not a straightforward task. Due to the irregularity of
sparse data, customizing FPGA-based accelerators for SpMM encounters the following challenges:

—Dataflow Selection: The selection of dataflow determines the computation method for SpMM.
It further necessitates designers to consider matrix storage formats, memory access design,
and parallel computing architecture based on hardware resource constraints.

—Matrix Storage Efficiency: Sparse matrices are characterized by a significant amount of zero
elements. Storing sparse matrices in the same way as regular matrices (dense matrices), where
every element is stored, leads to significant memory wastage. Therefore, it’s essential to
compress sparse matrices for storage. Effective data compression formats can reduce memory
overhead.

—Memory Access Efficiency: The random distribution of nonzero elements in sparse matrices
necessitates continual access to discontinuous, random memory addresses during parallel
matrix multiplications. Therefore, enhancing the access efficiency to the nonzero elements of
sparse matrices is crucial in processing sparse matrices.

—Parallel Computing Efficiency: Sparse matrices often exhibit significant variations in the count
of nonzero elements across their rows and columns. This irregularity results in unevenDigital
Signal Processor (DSP) loads during parallel computing, which in turn lowers the total
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Fig. 1. (a) Sparse matrix; (b) dense matrix.

system throughput. Therefore, balancing the workload across different DSPs is a key factor in
determining the efficiency parallel computational.

This article provides an overview of the State-of-the-Art (SOTA) research on FPGA-based
SpMM accelerators, framed from the perspective of addressing these challenges. Firstly, we in-
troduce the background and computational methods of SpMM. Then, we analyze how different
FPGA-based SOTA SpMM designs handle these challenges. Finally, we discuss future development
opportunities and offer potential directions for subsequent research efforts. This article aims to
benefit researchers dedicated to designing FPGA-based SpMM accelerators. The contributions of
this work are summarized as follows:

(1) We characterize common problems in SpMM computing and classify them into four types of
challenges.

(2) We review FPGA-based SpMM accelerators, detailing how they address various challenges.
Additionally, we conduct a horizontal performance comparison of these accelerators.

(3) We provide a series of potential directions for subsequent FPGA-based SpMM acceleration
designs. To the best of our knowledge, this is the first comprehensive survey of FPGA-based
SpMM accelerators.

The rest of this article is organized as follows. In Section 2, we provide necessary background
information about SpMM and its typical computational methods. Section 3 introduces our survey
and search methods. Next, in Section 4 we provide an overview of previous work in FPGA-based
SpMM accelerator designs and connect them with the four challenges, and in Section 5, we make a
comparison between these SOTA accelerator designs. Section 6 highlights the future directions for
FPGA-based SpMM accelerators. Finally, Section 7 concludes the article.

2 Background
2.1 Preliminaries
A sparse matrix is a matrix in which most of the elements are zero. This contrasts with a dense
matrix, where most of the elements are nonzero. Sparse matrices are particularly useful in areas
of computational mathematics and computer science, including numerical analysis, optimization,
and the representation of data or network graphs. As shown in Figure 1, the gray areas represent
nonzero values, while the blank areas are all zeros, in contrast to a dense matrix.

SpMM refers to the process of multiplying two matrices in which one or both of them are sparse
matrices. SpMMs are commonly encountered in practical applications. For instance, the matrix
corresponding to pixel points of an image may be sparse in image processing [62]. As network
analysis, due to the sparse connections between a large number of nodes, network topologies can
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Table 1. Notations in SpMM

Notation Description
� First matrix
� Second matrix
� Result matrix
< The mth row of the first matrix
= The nth column of the second matrix
: The kth column of the first matrix and the kth row of the second matrix
==I Number of nonzero values

Fig. 2. Examples of four matrix multiplication methods: (a) inner product; (b) outer product; (c) row-wise
product; (d) column-wise product. Nonzero elements in the two input matrices are shown in orange and blue,
nonzero elements in the output matrix are shown in green, and matrix elements involved in the computation
are highlighted with black borders.

be represented by sparse matrices [55]. Furthermore, in machine learning, some feature matrices
also exhibit sparse characteristics [38].

The computation of SpMM follows the same principles as regular matrix multiplication, with four
main methods: inner product, outer product, row-wise product, and column-wise product. Effective
reuse of data reflects the efficiency of these computational methods, and there is variability in data
reusability among different methods.We outline the processes of these distinct matrix multiplication
methods. Table 1 summarizes the symbols used to represent sparse matrices. Moreover, Table A1
provides a reference for the main abbreviations used in this paper For simplicity, we assume that = =

< = : . In other words, the matrices involved in the computation are =-dimensional square matrices.
The inner product is the most commonly used method for matrix multiplication. The operation

involves a series of dot products between rows of the first matrix, �, and columns of the second
matrix, �, to compute elements of the final product matrix, � , as shown in Equation (1):

� [<,=] =
#∑
:=0

�[<,:] ∗ � [:, =] . (1)

A single inner product calculation yields one element of the result matrix, necessitating iteration
over the rows< of � and the columns = of �. As illustrated in Figure 2(a), index matching : is
required to identify elements used forMultiplication and Accumulation (MAC). For SpMM,
effective output is generated only when there is an intersection of nonzero value indices in : .
The inner product computation in sparse matrices typically exhibits good output reusability

but poor input reusability. The two input matrices require different storage formats: matrix �
primarily organized by rows, and matrix � by columns. Inner product calculations involve iterating
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over all elements of rows and columns, making it more suitable for dense matrices. However, for
extremely sparse matrices, the iteration overhead becomes relatively high. MAC operations can
only be executed with index matching, making data organization relatively complex. However, this
method has lower requirements for on-chip memory.

The outer product method multiplies a column of the first matrix, �, with the corresponding row
of the second matrix, �, producing a partial matrix for the result, as shown in Equation (2):

� [:, :] =
#∑
:=0

�[:, :] ∗ � [:, :] . (2)

A single outer product computation generates a complete< × = matrix. By combining : partial
output matrices, the final output matrix is formed, as illustrated in Figure 2(b). Therefore, the
computation is divided into two parts: multiplication operations to generate partial product matrices,
followed by merging operations that accumulate these partial matrices into the final result.
Compared to the inner product, the outer product achieves good reuse of input matrices by

sequentially reading � and � once, without the need for index matching between input matrices.
However, as the outer product generates a large number of intermediate results, it typically requires
access to off-chip memory, thus being limited by poor output reusability. The outer product is
generally more advantageous for sparser input matrices. Similarly, the two input matrices usually
require different storage formats, with matrix � primarily organized by columns and matrix � by
rows.
The Gustavson method, which includes the row-wise product and the column-wise product

(transposed case of the row-wise product) [20], is depicted in Equations (3) and (4):

� [<, :] =
#∑
:=0

�[<,:] ∗ � [:, :] . (3)

The row-wise product involves multiplying nonzero elements of a row in matrix � with cor-
responding nonzero elements in the same row of matrix �. The column indices of the selected
row in � are matched with the row indices in � to produce intermediate rows of the result matrix.
Figure 2(c) illustrates the process of the row-wise product algorithm, where a row in the result
matrix � is the cumulative sum of intermediate rows. The row index of the intermediate rows is
determined by the row in matrix �, thus computing the output matrix one row at a time.

The row-wise product is characterized by sequential row-oriented access for matrices, allowing
the use of the same storage format for both input and output matrices. Compared to the previ-
ously mentioned methods, the row-wise product avoids extreme dataflow scenarios but has lesser
reusability for individual values and lower on-chip data reuse rates. Unlike the inner product, it
doesn’t require hardware-intensive index matching operations between elements of input matrices.
Compared to the outer product, it simplifies operations for merging partial sums in sparse matrices.
As each computation outputs a single row, it requires less on-chip memory compared to the outer
product.
The column-wise product, also known as the column Gustavson algorithm, differs from the

row-wise product in that it multiplies all nonzero elements of a certain column in matrix � with
corresponding nonzero elements in the same column of matrix �, as shown in Equation (4):

� [:, =] =
#∑
:=0

�[:, :] ∗ � [:, =] . (4)
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The column indices of B arematchedwith the row indices of the selected column in�, and the final
results are accumulated into the corresponding columns of the output matrix. The computational
process is illustrated in Figure 2(d).

2.2 Applications
Efficient SpMM is crucial for many scientific applications, and it has received extensive attention
over the past decade. Research related to SpMM has been conducted across multiple fields.

2.2.1 Artificial Intelligence Generative Content (AIGC). In the field of AIGC, models such as Gen-
erative Adversarial Networks (GANs) increasingly require more efficient SpMM computations
as data volumes continue to grow [44]. For example, NVIDIA’s Ampere architecture features a
sparsity function that introduces structured sparsity to optimize SpMM, enhancing the performance
of deep learning models in both inference and training.This improvement provides higher efficiency
in tasks such as image and video generation [46]. Specifically, NVIDIA has implemented support
for 2:4 structured sparsity on its Ampere GPUs, allowing two out of every four elements to be
0. This approach significantly reduces the computational burden while leveraging the hardware
acceleration provided by Sparse Tensor Cores, thereby enhancing the computational efficiency of
generative models such as GANs [52].

2.2.2 Natural Language Processing (NLP). In the field of NLP, Transformers are the most popular
models whose self-attention mechanisms often generate large sparse matrices when handling cross-
sequence dependencies [39]. Accelerating the multiplication of these sparse matrices is particularly
crucial. Huawei’s Ascend AI processor, especially the Ascend 910, has significantly improved
the efficiency of Transformers in tasks such as machine translation and speech recognition by
optimizing sparse matrix operations. This enhancement has promoted the widespread adoption
and application of Transformers in various fields [68]. NVIDIA’s Hopper architecture has further
accelerated related computations by adding the FP8 Transformer Engine to its Sparse Tensor
Cores [52].

2.2.3 Convolutional Neural Networks (CNNs). In computer vision, CNNs often process large
amounts of image data, which become sparse after feature extraction and multiple layers of
processing [31]. SpMM accelerators can leverage this sparsity to enhance computational speed.
Google’s Tensor Processing Unit-like architecture [21] has demonstrated significant advantages
in CNN model computations by accelerating SpMM, thereby improving inference and training
efficiency [30].

2.2.4 Recommendation Systems. In the field of recommendation systems, Graph Neural Net-
work (GNN)models rely on graph-structured data, often involving sparse matrix operations during
processing. NVIDIA’s Deep Graph Library (DGL) is a deep learning framework specifically de-
signed for GNNs, supporting various types of GNN models [63]. DGL provides specialized API
functions to encapsulate SpMM operations, optimizing the storage and manipulation of sparse
matrices internally. By integrating efficient SpMM acceleration techniques, DGL enhances the com-
putational efficiency of neural networks on graphs. This is particularly beneficial for applications
such as large-scale social networks and recommendation systems, where SpMM accelerators can
significantly boost the training and inference speed of GNN models.

3 Survey Methodology
To systematically review and analyze the latest research in the field of SpMM, we conduct a
detailed literature search and selection process. Given the rapid development in HPC and hardware-
based accelerated computation, numerous new methods and technologies are proposed each year.
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Table 2. Search Strategy

Search engines Search strategy

Initial search

IEEE Xplore

(“ALL Metadata”: SpMM) OR
(“ALL Metadata”: SpMV) AND

(“ALL Metadata”: FPGA)
Filters Applied: 2020–2024

ACM digital libraries

[All: SpMM] OR
[All: SpMV] AND
[All: FPGA] AND

[E-Publication Date: (01 January 2020 TO 30 May 2024)]

Springer Link

(SpMM) OR
(SpMV) AND
(FPGA) AND

Custom dates 2020–2024

arXiv

(All fields: SpMM) OR
(All fields: SpMV) AND
(All fields: FPGA) AND

date_range: from 2020 to 2024

Update search

IEEE Xplore
(“All Metadata”: sparse matrix multipli) AND

(“All Metadata”: FPGA) AND
Filters Applied: 2020–2024

ACM digital libraries
[All: “sparse matrix multipli”] AND

[All: FPGA] AND
[E-Publication Date: (01 January 2020 TO 30 May 2024)]

Springer Link
(sparse matrix multipli) AND

(FPGA) AND
Custom dates 2020–2024

arXiv
(ALL fields: sparse matrix multipli) AND

(ALL fields: FPGA) AND
date_range: from 2020 to 2024

Additional search Google Scholar Related citations
Academic profiles of frequently cited authors

Therefore, we choose to include literature from 2020 onward to ensure that all references reflect
the latest technological advancements and research findings. This approach not only ensures that
the review content is timely and relevant but also maximizes the utilization of recent innovations.

We use the snowball search strategy, conducted in three rounds as shown in Table 2. The initial
round was performed in the following major digital libraries: IEEE Xplore, ACM Digital Libraries,
Springer Link, and arXiv. It is important to note that, although the research quality on arXiv varies,
it contains many cutting-edge studies, so we do not overlook it. On these datasets, we used “SpMM”
and “SpMV” as the main keywords for search. However, initial results indicated that these keywords
were not ideal, as we only obtained approximately 13 relevant articles. This is because many related
papers do not explicitly tag these abbreviations as keywords. Therefore, we’ve adjusted our retrieval
strategy to use the more general keyword “sparse matrix multipli” for new searches, accounting for
different word forms and expressions by specifically inputting “multipli.” This change allowed us to
retrieve over 350 relevant articles. After retrieving the set of literature, we used Google Scholar to
analyze the references and citation lists of the retrieved papers, further expanding the literature
set step by step. Additionally, we focused on the academic profiles of frequently cited authors
within the literature set to supplement and enhance our database. Through these steps, we have
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Table 3. Comparison of the Characteristics of Different SpMMMethods

Methods Intermediate results Data reusability On-chip storage Index matching
Inner product An element of the result matrix Output data reuse Minimum Strong
Outer product Partial matrix Input data reuse Maximum Weak

Row-wise product A row of the result matrix Medium Medium Medium
Column-wise product A column of the result matrix Medium Medium Medium

obtained a total of 481 articles. Finally, we have made a filtering, as we aim to present the latest
and most significant research in this field. We focus on top-tier computer architecture conferences
(ISCA, MICRO, HPCA, ASPLOS), FPGA conferences (FPGA, FPL, FCCM, FPT), electronic design
automation conferences (DAC, DATE, ICCAD, ASP-DAC), and high-impact journals (TC, TCAD,
TRETS, TVLSI, and so on) because these publications represent the forefront of this field [19]. After
all these steps, we discussed a total of 26 FPGA-based SpMM designs in this survey.

4 Existing FPGA-Based SpMM Accelerator to Handle Three Challenges
4.1 Dataflow Selection
For SpMM, the inner product, outer product, and Gustavson algorithms are different methods
used to perform multiplication computations. Their main differences lie in how they handle the
arrangement and access of nonzero elements, that affect the number of memory accesses and the
speed (parallelism) of computation in SpMM. It is crucial to select an appropriate computation
method based on the sparsity, matrix size, and hardware resource limitation. Table 3 shows the
characteristics of different SpMM methods.

4.1.1 The Inner Product. As introduced in Section 2, the inner product method performs compu-
tations on each rows of the input matrix A with the column of matrix B. Its parallel computation
process can almost be considered as SpMV. For sparse matrices, only computations on nonzero
elements are effective and contribute to the final result. Additionally, the irregular distribution
of nonzero elements in sparse rows can cause load imbalance issues during parallel computation.
Therefore, designers need to pay attention to both matrix storage and load imbalance.
Serpens [57] targets SpMV computation by leveraging the high bandwidth and multichannel

characteristics of HBM to design efficient data access mechanism. By replicating sparse elements and
dense vectors multiple times, they avoid read conflicts and enable inter-row parallel computation.
They achieve load balancing by reordering non-zero elements. Graph-OPU [4] addresses SpMM
inner product computation by proposing an optimized Packet-Level Column-Only Coordinate
(PCOO) format that unifies the storage format for sparse data. Similar to Serpens, Graph-OPU
utilizes HBM’s high bandwidth and multichannel characteristics, replicating sparse elements and
dense vectors multiple times to avoid read conflicts and achieve inter-row parallel computation.
To tackle load imbalance issues, Graph-OPU employs a pipelined parallel design and an adder
tree design with flexible data paths to mitigate load imbalance. SkeletonGCN [64] also introduces
an improved compression storage format, Compact PCOO (CPCOO), which reduces storage
overhead. Additionally, SkeletonGCN features a data distribution module to control the dataflow
required by the Multiply-Accumulate (MACC) array, enabling efficient row data reads from the
left matrix. SkeletonGCN addresses load imbalance through a ping-pong buffer design, ultimately
enhancing DSP efficiency.

4.1.2 The Outer Product. For the outer product computation, each column of matrix A and
each row of matrix B computation results in a portion of the resulting matrix. Therefore, the outer
product requires new space to store these intermediate results. This is particularly significant
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when dealing with large-scale data, as substantial storage resources are needed to buffer these
intermediate results.
Due to the limited on-chip memory resources, FPGA-based SpMM accelerator design with

the outer product computation method is not common. LW-GCN [60] proposes an innovative
compression format called PCOO, which unifies data storage. Additionally, LW-GCN designs a
multiport memory system and reduces data conflicts further through data replication and row
grouping. By employing tiling techniques, it processes a portion of SpMM at one time. Sextans [58]
balances the load among PEs by partitioning matrix A. It fully leverages the large capacity and
data bandwidth advantages of HBM. Sextans designs an HBM access module paired with a fully
pipelined computing unit to avoid the limitations of storage resources for intermediate results.

4.1.3 Gustavson. Gustavson is one with significant parallel computing potential, as it allows for
the parallel computation of multiple rows within matrix. Each computation in Gustavson results in
row or column, so the required output buffer size is approximately the size of one row or column.
However, the irregular distribution of nonzero elements leads memory access conflicts. Additionally,
it also can lead to workload imbalances among the computational units.

Currently, several FPGA-based accelerators accelerate SpMMwith Gustavson. To address memory
access conflicts, Li et al. [33, 36] proposed a novel access pattern-aware cache scheme called SpCache,
executing the Gustavson algorithm in an element-parallel manner. Gao et al. [16] achieved load
balancing by partitioning sparse data equally and proposed vertex clustering optimization to
reduce global data transfers. Building on this research, Gao et al. [16] implemented an adaptive
dataflow scheduling strategy based on the Gustavson algorithm to mitigate sparsity and explore
regular parallelism during computation. FSpGEMM [61] employs the Gustavson algorithm to avoid
zero output calculations and reduce the synchronization overhead of computing partial products.
They also customized a buffering scheme tailored for the Gustavson algorithm to enhance the
reuse of input matrices, thereby reducing off-chip memory accesses. Dynasparse [69] proposed an
innovative unified accelerator design on FPGA, leveraging dynamic sparsity to accelerate GNN
inference. When computing under SpMM mod, Gustavson’s computation can efficiently skip zero
elements in both input matrices.

4.1.4 Summary. As the above introduction and review, the design challenges corresponding
to dataflow selection can be classified into Matrix Storage Efficiency, Memory Access Efficiency,
and Parallel Computing Efficiency. In other words, these challenges are intertwined with dataflow
selection. Therefore, in the following sections, we will provide a more detailed introduction to the
efforts made by previous research to address these three challenges.

4.2 Matrix Storage Efficiency
4.2.1 General Sparse Matrix. In sparse matrices, where a majority of elements are zero, storing

them in the same manner as dense matrices results in unnecessary memory resource consumption.
Utilizing standard compression formats (such as Coordinate (COO), CSR, and Compressed
Sparse Columns (CSC)) enhances memory efficiency. Additionally, to address both compression
and access efficiency [56], recent years have seen the development of novel compression formats,
tailored to meet diverse computational requirements and hardware platforms. Following, we delve
into several general sparse matrix compression formats. Figure 3 exemplifies these formats using
matrix A, providing a detailed introduction to common compression methodologies in the context
of sparse matrices.

COO: COO [53] is a straightforward compression format that stores nonzero elements by their
coordinates. As shown in Figure 3(a), it uses three arrays: E0; , A>F , and 2>; , to store the values, row
indices, and column indices of nonzero elements in a sparse matrix, respectively. In the COO, the
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Fig. 3. Three common compression formats of sparse matrices: (a) COO; (b) CSR; (c) CSC.

corresponding three array elements can be obtained without additional operations or sorting of
nonzero elements. However, COO may lead to increased memory consumption for matrices with a
lower density of non-zero elements.
CSR: CSR [53] is the most commonly employed compression format and optimizes matrices

by compressing them row-wise. It also consists of three arrays: E0; , 2>;_8=3 , and A>F_?CA . The
E0; stores nonzero values in a row-major sequence, with its size equal to the number of non-zero
elements (==I). The 2>;_8=3 indicates the column indices of these nonzero elements, also sized to
==I. The A>F_?CA , crucial for row demarcation, points to the start and end of each row in the matrix.
For a matrix of size # × # , A>F_?CA has # + 1 elements, where the count of nonzero elements
in the 8th row can be determined by A>F?CA (8+1) − A>F?AC (8 ) . Figure 3(b) illustrates an example
employing the CSR format. Relative to COO, CSR format offers reduced memory consumption for
storing. Yet, its efficiency drops notably when column-wise traversal or random access of matrix
elements is required. This necessitates the integration of additional data lookup mechanisms to
identify nonzero elements’ positions. Consequently, employing CSR involves weighing the tradeoff
between memory conservation and the extra resource expenditure involved.

CSC : CSC [53] format compresses the matrix column-wise and also comprises three arrays: E0; ,
2>;_?CA , and A>F_8=3 , as shown in Figure 3(c). The E0; represents the values of nonzero elements,
the 2>;?CA indicates the start and end pointers of each column, and the A>F_8=3 corresponds to the
row indices of these nonzero elements, aligned with the values in the E0; array. The CSC format
simplifies matrix operations involving column-wise actions, offering direct access to the respective
columns. However, its efficiency is lower when it comes to row-wise operations.
In addition to the aforementioned common compression formats, specialized formats designed

for FPGA-based accelerators have been proposed. These formats cater to various types of sparse
matrices and architectural designs, differing in memory consumption and accessing efficiency.

C2SR: Hosseinabady and Nunez-Yanez [23] introduced an improved compression format based on
CSR, termed modified CSR, “removing” (MCSR). This format utilizes the count of nonzero elements
per row instead of row pointers to indicate the row information of nonzero elements. This concept
is similar to the C2SR format [59]. For clarity and to distinguish from other compression formats
introduced later, this article refers to it as C2SR. The format comprises three arrays: E0; , 2>;_8=3 ,
and A>F_;4=6Cℎ, as shown in Figure 4. E0; and 2>;_8=3 store the nonzero values and column indices
of the sparse matrix, respectively, while A>F_;4=6Cℎ records the number of nonzero values in each
row.
MCSR: MCSR [51] is specifically designed for SpMV on multicore hardware accelerators. Its

uniqueness lies in compressing not only the nonzero elements of the sparse matrix but also the
elements of the vector to be multiplied. MCSR is represented by three arrays that store relevant data
of the sparse matrix and the vector:"0CA8G+0;D4 , �8=8Bℎ�;06, and+42C>A+0;D4 . The"0CA8G+0;D4
array stores the nonzero values of the matrix, the �8=8Bℎ�;06 indicates whether an element is the
last nonzero element in its row, and the+42C>A+0;D4 array contains the corresponding elements of
the vector to be multiplied, as shown in Figure 5(a). The sequence of vector elements stored in the
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Fig. 4. C2SR format of the sparse matrix.

Fig. 5. (a) MCSR format of the sparse matrix; (b) ReMCOO format of the sparse matrix.

+42C>A+0;D4 array aligns with the column indices of nonzero elements. MCSR’s storage pattern is
distinct from row-wise or column-wise. It begins by storing the first nonzero element of each row,
iteratively assessing all rows in a manner where only one nonzero element per row is stored per
iteration. This access continues until every row’s nonzero elements are included in the array.
Redundant Modified Coordinate (ReMCOO): ReMCOO [43], targeting SpMV implemented

on FPGAs, introduces a novel format to represent sparse matrices and vectors for efficient SpMV.
ReMCOO is represented by three arrays, as illustrated in Figure 5(b). The A�3 array holds the row
indices of nonzero elements in matrix A, E0;D4 stores the nonzero values of matrix A, and G3
contains elements of the input vector x pointed to by the column indices of nonzero elements in
the sparse matrix A. The length of each array is equal and corresponds to the number of nonzero
elements in the respective sparse matrix.

PCOO-List : PCOO [60] introduces the concept of data packets into data compression formats. As
shown in Figure 6(a), the PCOO format organizes each row as a unit, treating all nonzero elements
in a row as a data packet. The first three bits act as the packet header: the first two bits specify the
row information for each non-zero element, indicating the start of row (B>A ) for the first nonzero
element and the end of row (4>A ) for the last, while the third bit, the valid bit (E;3), indicates whether
the element is an injected null element. The remaining bits contain column information (2>; ) and
the values of each nonzero element (E0; ), with ;>62# bits for the column position and the remaining
H bits for the value. If a row has no nonzero elements, header bits are set to B>A = 4>A = 1 and E;3 = 0.
Thus, representing each nonzero element in a sparse matrix requires 3 + ;>62# + � bits.
Optimized PCOO (OPCOO): OPCOO [4] is an improved format of PCOO. It leverages the

implicit row index information during matrix multiplication access and incorporates an OPCOO
format to further compress the storage of sparse matrices. As illustrated in Figure 6(b), OPCOO
retains only the 4>A group, which indicates the end of a row, the 2>; group for column indices, and
the E0; group for storing nonzero values.
CPCOO: CPCOO [64] is also an improvement on the PCOO format, primarily focusing on

eliminating redundant information to further compress sparse matrices. As shown in Figure 6(c),
CPCOO retains the same representation as PCOO for rows with nonzero elements, but it divides
into two parts: the header and the main body. For rows that contain at least one nonzero element,
the encoder stores vld, the sor, and the eor markers in the Header section. These markers define
the storage range of nonzero elements in the Body section. For rows with all zero elements, the
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Fig. 6. (a) PCOO format of the sparse matrix; (b) OPCOO format of the sparse matrix; (c) CPCOO format of
the sparse matrix.

CPCOO format sets the vld bit to 0, indicating that the Body section does not store any information
for these rows, as empty rows do not contribute to matrix computations.

Compressed Variable-Length Bit-Vector (CVBV): Kestur et al. [32] proposed three compression
methods for sparse matrices: Bit-Vector (BV), Compressed Bit-Vector (CBV), and CVBV. Among
these, the CVBV format is an optimization of BV and CBV, with its core principle being the use of
variable-length encoding schemes to represent sequences of consecutive zero or nonzero values in
the matrix. This method leverages the fine-grained bit manipulation capabilities of FPGAs. In the
CVBV format, variable-length data fields are used to store run-length encoding. Each sequence
of consecutive zero or nonzero values is preceded by a 4-bit header. The first bit of this header
indicates whether the sequence is zero (0) or nonzero (1). The next three bits specify how many
nibbles (4-bit units) are used to store the count, allowing for a maximum of 4 bytes.

4.2.2 Symmetric Sparse Matrix. With the growing prevalence of graph structure data processing,
attention on symmetric sparse matrices originating from undirected graphs has significantly
increased among the research community [11]. Symmetric sparse matrices, as depicted in Figure 7(a),
are characterized by diagonal symmetry, where matrix elements exhibit equal values on either
side of the diagonal. Owing to their unique configuration, it’s possible to store only nonzero
elements of either the upper or lower triangular sub-matrix, effectively downsizing the overall
matrix. Therefore, beyond the compression formats already discussed, there are specifically tailored
formats for symmetric sparse matrices, aimed at optimizing memory usage.
Symmetric Sparse Skyline (SSS): SSS [17] is a compression format specifically designed for

symmetric sparse matrices. It stores only the lower triangular sub-matrix and its main diagonal,
effectively reducing the matrix size by approximately half. As illustrated in Figure 7(b), the SSS
format stores the main diagonal elements of the matrix in the 3E0;D4B array, with a size of N,
corresponding to the matrix’s dimension. Notably, zero elements on the diagonal are retained in
the array alongside nonzero elements. The standard CSR format is used to store the remaining
nonzero elements of the lower triangular matrix, including arrays A>F?CA , 2>;8=3 , and E0;D4 .

SCSR: SCSR [5] is a data format tailored for Symmetric Sparse Matrix-Vector Multiplication
(SSpMV) computations. SCSR combines the advantage of SSS and C2SR, optimizing to reduce
memory access load. Different from SSS, SCSR is similar to C2SR, using only three arrays to represent
matrix data: values, column indices, and row lengths. As depicted in Figure 7(c), the E0;D4 array
in SCSR includes only the nonzero elements from the upper triangle and the main diagonal. The
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Fig. 7. (a) Symmetric sparse matrix; (b) SSS format of the symmetric sparse matrix; (c) SCSR format of the
symmetric sparse matrix.

Table 4. Compression Ratio Formula for Different Compression Formats

Compression format Compression ratio Data types Index types
COO [53] (3×32==I )/(32n×n ) 32-bit 32-bit
CSR [53] [2×32==I + 32(n+1)]/(32n×n) 32-bit 32-bit
CSC [53] [2×32==I + 32(n+1)]/(32n×n) 32-bit 32-bit
C2SR [23] [2×32==I + 32n]/(32n×n) 32-bit 32-bit
MCSR [51] (==I + 18==I)/(18n×n) 18-bit (fixed-point) 1-bit

ReMCOO [43] (2×32==I)/(32n×n) 32-bit 32-bit
PCOO [60] [3 × (==I + =E>83 ) + log2 =× (==I + =E>83 ) + 16(==I + =E>83 )]/(16n×n) 16-bit log2 = bit/1-bit
OPCOO [4] [(==I + =E>83 ) + 31(==I + =E>83 ) + 32(==I + =E>83 )]/(32n×n) 32-bit 31-bit/1-bit
CPCOO [64] [3×(==I + =E>83 ) + log2 = × ==I + 16==I]/(16n×n) 16-bit log2 = bit/1-bit
SSS [17] [32×n + 2×32==I3>F= + 32(n+1)]/(32n×n) 32-bit 32-bit
SCSR [5] [2×32(==ID? + ==I3806) + 32×n]/(32n×n) 32-bit 32-bit

2>;_8=34G and A>F_;4=6Cℎ, respectively, maintain the column indices and the quantity of nonzero
elements per row.

4.2.3 Comparison. We compare the compression ratios of the various compression formats
introduced in this section, as described by

�><?A4BB8>=_'0C8> =
�><?A4BB43_(8I4
*=2><?A4BB43_(8I4

, (5)

whereas (8I4 is denoted by

(8I4 = #D<14A_> 5 _�0C0 × �0C0_,83Cℎ. (6)

Table 4 summarizes the formulas for compression ratios corresponding to different compression
formats. It should be noted that we consider all matrices as square matrices with dimensions of n ×
n. The =E>83 represents the data required for padding in the compression format, such as the zeros
in PCOO.
To intuitively compare the compression rates of various formats, we conduct tests on the

University of Florida’s sparse matrix dataset [11] using the formula in Table 4. The test matrices
include both general and symmetric sparse matrices, with dimensions ranging from 10 to 50,000
and data densities varying from 1%–30%. For fairness in comparison, we standardize the bit width
of the original sparse matrices to match the compression formats. Due to the wide range of sparsity
in the original matrices, we apply a logarithmic function to compress the scale of the compression
rates, making analysis and comparison more manageable.
Figure 8 shows the compression rates of different formats applied to general sparse matrices,

consistent with their theoretical formula representations. For both MCSR and ReMCOO, the
compression formats are designed for the sparse matrices in SpMV. The commonality is that they
both compress the elements of the vector involved in the multiplication along with the nonzero
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Fig. 8. Comparison of compression rates of different compression formats: treatment of ordinary sparse
matrices.

elements of the matrix. However, to fairly compare compression ratios with other formats, we
only account for the compression of the sparse matrix portion and do not include the memory
usage of the vector part in our calculations. Among these, MCSR is the most efficient due to its
transformation of the original matrix into just two arrays: Matrix Value and Finish Flag. The Finish
Flag, indicating the row-end marker, has a bit width of only 1 bit. However, this comes at the
cost of requiring an additional scheduling algorithm, such as Hu’s algorithm [25], to optimize the
arrangement of nonzero elements in the sparse matrix. This method alters the original matrix’s
storage in memory, thereby adding an unavoidable time-consuming scheduling phase. In contrast,
the COO format is the least efficient as it requires storing both row and column indices. The overlap
between CSR and CSC is due to the fact that the difference between these two formats lies only
in the order of storage, resulting in the same memory consumption. PCOO and OPCOO perform
similarly because the difference between these formats lies mainly in the storage of inserted null
elements, which has a negligible impact. We also observe that as the sparsity of the matrices
increases, the compression rates of different formats gradually decrease. This indirectly indicates
that for matrices with higher sparsity, saving memory through matrix compression becomes more
efficient.

For symmetric sparse matrices, as shown in Figure 9, their dedicated compression formats, SSS
and SCSR, outperform the general compression formats. Among these, SCSR is more efficient due
to its more effective handling of the diagonal elements in symmetric sparse matrices.

4.3 Memory Access Efficiency
FPGAs, with their constrained resources, necessitate efficient access to nonzero data in SpMM,
aiming to optimally utilize available memory bandwidth. The inherent sparsity of matrices, par-
ticularly in large-scale instances, results in an irregular distribution of nonzero data [6], posing
challenges to memory access efficiency. Appropriately leveraging data reuse becomes crucial in
enhancing computational efficacy. Therefore, to maximize the use of memory bandwidth on FPGAs,
memory access strategies that harness data reuse are commonly devised, significantly improving
the efficiency of memory access.
The processing of SpMM typically involves random access to three matrices: two matrices to

be multiplied (denoted as matrix A and matrix B) and the resultant matrix (denoted as matrix
C). Given the immense dimensions of sparse matrices, it’s impractical to store all matrix data in
on-chip memory, even when compressed formats are used. Consequently, off-chip memory is used
for storage. However, issuing numerous irregular accesses to off-chip memory is highly inefficient.
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Fig. 9. Comparison of compression rates of different compression formats: treatment of symmetric sparse
matrices.

The following section introduces various design modules or strategies aimed at enhancing
memory access efficiency. These include architectures specifically developed for accelerating SpMM,
as well as those related to GNN accelerators, where SpMM is a crucial kernel.

4.3.1 Optimized Cache Design. Li et al. [33, 36] observe that traditional caching mechanisms
adversely affect SpMM performance. To address this, they introduce SpCache, a specialized cache
design. SpCache expedites responses to irregular requests by prefetching off-chip memory accesses,
mitigating conflicts caused by simultaneous accesses to the same memory bank. It consists of a
banked cache and four cache managers. When a request arrives, a cache manager queries the
targeted bank. SpCache checks for a cache hit in one cycle; if it’s a miss, it initiates off-chip memory
access, fetching data into the cache bank and the target component. If it’s a hit, the response is
simply to the cache manager. Additionally, it implements strategies to ensure sequential access and
caching of elements in matrix B, effectively handling sequences with unpredictable access lengths.
By reducing memory access conflicts from irregular accesses, SpCache significantly enhances
overall performance.

Tavakoli et al. [61] propose an OpenCL-based HPC framework, FSpGEMM, geared toward accel-
erating FPGA-based SpGEMM. FSpGEMM utilizes the Gustavson algorithm, effectively bypassing
zero-output calculations and minimizing synchronization costs for computing partial products. To
tackle the irregular memory access inherent in sparse matrices, FSpGEMM introduces a tailored
buffering strategy optimized for the Gustavson algorithm, thereby enhancing the reuse of input
matrices. Unlike traditional sparse matrix compression formats like SCR and CSR, FSpGEMM adopts
a vector-major compression sequence. Its Compressed Sparse Vector (CSV) format, illustrated
in Figure 10(a), aligns vector lengths with the quantity of computation units, ensuring consistent
off-chip memory access. This approach facilitates parallel processing of multiple rows from the
first input matrix and concurrent sharing of rows from the second input matrix. As shown in
Figure 10(b), substantially reducing the amount of off-chip memory access is required.

Liu and Liu [40] propose an FPGA-based high-bandwidth-utilization SpMV accelerator, featuring
a novel memory architecture to address irregular memory accesses caused by compressed data. To
navigate the constraints of on-chip resources, they partition large matrices and vectors into blocks
and segments, breaking down the entire SpMV process into multiple batches. A read-conflict-free
buffer with two sub-buffers stores identical vector elements, each buffer containing four Block
RAMs (BRAMs) and two 4-to-1 multiplexers to prevent read port conflicts from various PEs. They
also design a write-conflict-free adder tree, where multiplication results pass through a 2-input
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Fig. 10. The design within [61]: (a) sparse matrix representation using CSV format; (b) example of proposed
data buffering scheme.

MUX, then a pipelined adder sequentially accumulates the results. A crossbar switch selects outputs
to avoid write conflicts from nonzero elements in the same row. Additionally, they use a ping-pong
accumulator, composed of several registers and adders, to calculate partial sums per row. Three
registers facilitate functional switching to store partial sums from the previous batch, accumulate
the current batch, and load for the next batch, masking the overhead of loading and storing. This
approach of a read-conflict-free buffer and write-conflict-free adder tree effectively eliminates and
masks delays caused by irregular vector accesses.

4.3.2 Preprocessing Design. To enhance access efficiency, data preprocessing is a crucial ap-
proach. A typical preprocessing method involves reorganizing and rearranging input data. The
objective of data reordering is to cluster adjacent sparse elements together, thereby reducing the
number of memory accesses. This maximizes memory access efficiency, minimizes data trans-
fer latency, and fully leverages the parallelism inherent in FPGAs. The specific implementation
methods and processing strategies vary depending on the design architecture and application
context.

Li et al. [34] propose an algorithm for rearranging nonzero element data to facilitate data reuse.
They configure the system to transfer four nonzero elements from off-chip memory to the FPGA
chip each cycle, with vector elements stored on-chip, allowing access to up to two vector elements
per cycle. The algorithm follows three rules: Rule 1 (Intra-Group Reuse): Arrange reusable columns
within the same cycle as much as possible, minimizing repeated accesses to the same vector elements
across different cycles.This also considers prioritizing rows with a higher count of nonzero elements
to maximize data reuse and fully utilize memory ports. Rule 2 (Inter-Group Reuse): Vector elements
obtained can be reused across different cycles. Elements that are reused are accessed before their
reuse, enabling omission of memory requests for these data. Rule 3: Rows with a higher count of
nonzero elements are prioritized for earlier computation.
Li et al. [35], building on data rearrangement, introduce Data Reuse-Aware Compression

(DRC) format to further utilize limited memory bandwidth. Since reusable vector values are known
before accelerator initiation, compressing the column indices of these vector values is feasible. As
shown in Figure 11, N and M represent the counts of reusable vector values and vector values to
be fetched, respectively, with a maximum of two vector values retrievable per cycle. The +0; holds
the N+M nonzero matrix element values in the group, '83 stores the row indices for these N+M
elements in the group,�83 contains the Mmemory addresses for the vector values to fetch, and"0?
maintains the N+Mmappings between matrix elements and vector values, where 0 indicates pairing
with the first unbuffered vector value and 1 with the second. The DRC’s implementation enables
further use of data reuse and a fast format conversion algorithm to reduce preprocessing time.
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Fig. 11. DRC format within [35].

Fig. 12. Example of vertex clustering optimization within [16].

The adjacency matrices’ high sparsity leads to increased frequency of random memory accesses
during GNNwith SpMM. Gao et al. [16] propose a vertex clustering optimization method to enhance
data reusability through reordering sparse matrices. This is viable because the processing order of
graph vertices is irrelevant to the final outcomes in GNN models. Their method reorganizes data
by swapping rows of coefficients, as shown in the adjacency matrix figure. It is divided into tiles
with equal nonzero elements, each represented by different colors. The areas circled in red indicate
opportunities for data reuse. Figure 12 illustrates that after vertex clustering optimization, the reuse
rate of nonzero elements is significantly improved.
Spaghetti [22] is a computation architecture based on outer product operations. To address

the poor output reusability in outer product computations, the authors propose a scheduling
algorithm that partitions the input matrix into blocks. This involves dividing part of the matrix
into independent data streams while retaining some parts on-chip for complete merging, thereby
enabling increased parallelism. Figure 13 illustrates an example of pattern-aware scheduling, with
two key objectives: Matrix Tiling: Considering on-chip memory and the depth of sort-merge, the
matrix A is divided into horizontal tiles to maximize reuse of partial matrices. Matrix Segmentation:
Each tile is further divided into vertical segments scheduled across multipliers, minimizing idle
cycles in mapping nonzero values to multipliers. Figure 13 shows the corresponding hardware
microarchitecture, where a group of multipliers is connected to two buffers at the DRAM stream
interface for data transfer. The scheduler calculates the starting addresses of input data and controls
the computation units. The storage formats for input data vary: matrix A uses CSC and matrix
B employs CSR, providing row and column indices, respectively, while the output matrix adopts
the COO format. Virtual channels are used to reduce the number of stalls at the allocator’s input
end. The allocator distributes the unsorted data stream produced by multiplication to different
sort-merge units in a cyclical fashion, parallelizing the sort-merge phase. The sort-merge units
implement a streaming sort method, generating one sorted data element per cycle and merging
and accumulating elements with the same COOs, achieving a fully pipelined design.

4.3.3 HBM-Based Design. When conducting SpMM on FPGAs, the extensive size of matrices
often prevents their complete on-chip storage. The data bandwidth limitations of conventional
off-chip DDR memory hinder the throughput of SpMM accelerators. To tackle this challenge,
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Fig. 13. The overall microarchitecture of Spaghetti [22].

some designs incorporate FPGAs with HBM, introducing specific optimizations to fully exploit the
high bandwidth of HBM. These optimizations include the following: (1) Partitioning the matrix
into several sub-matrices, followed by simultaneously loading each sub-matrix onto the FPGA
for buffering and computation. (2) Designing customized data packaging for HBM to effectively
mitigate memory access bottlenecks. (3) Implementing a modular design to enhance data processing
and management efficiency and flexibility.

Sextans [58] represents the first application case integrating HBM within FPGA and proposes the
partitioning of the three matrices that need to be accessed. Initially, matrix B undergoes row-wise
division into smaller sub-matrices, denoted as �8 , with a predetermined window size of  0. This
is followed by the column-wise segmentation of each Bi into smaller sections, referred to as �8 9 .
Since the columns of Bi correspond with the rows of matrix A, a similar window size is utilized to
divide matrix A’s rows into sub-matrices � 9 . This partitioning technique simplifies the processing
of large matrices by breaking them down into more manageable window-sized computational
tasks. Sextans also introduces a method to distribute nonzero points uniformly by dividing the zero
points in � 9 into P bins, where each bin ? contains nonzero values that comply with the condition
(row mod P) == ? . Figure 14(b) illustrates how matrix A is partitioned, with an example where
? = 2, and highlights the compression of both row and column indices. This approach facilitates
sequential processing in manageable window-sized segments and optimizes random memory
read and write operations within these specific windows, enhancing efficiency in the fast on-chip
memory. All sub-matrices are stored in HBM, eliminating the need to access individual matrix
elements. Instead, only sub-matrices are read or written, allowing HBM to facilitate streaming
transfers for efficient access. Figure 14(c) shows the overall architecture of Sextans, including eight
sets of Processing Engine Groups (PEGs), along with modules for data access and processing
computational results. Each PEG contains eight Processing Engines, operating concurrently. Initially,
eight Read A modules stream the partitioned matrix A from HBM to the PEGs. Simultaneously,
the Read B module streams the �8 9 window of matrix B located in HBM. The Read Ptr module
can schedule unordered nonzero values for delivery to the PEGs. After completing multiplication
operations, the Collect C module gathers disjoint intermediate results, which are then sent to
the Comp C module. Finally, the Read C and Write C modules facilitate data access for matrix C,
concluding the final accumulation calculations. Sextans’ efficient exploitation of HBM, coupled
with specialized optimizations for memory access strategies, enhances memory access efficiency
and addresses the challenges associated with off-chip access to large matrices.
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Fig. 14. The design within Sextans [58]: (a) examples of sparse matrices; (b) sparse matrix partitioning; (c)
overall architecture; (d) architecture of PEs.

Fig. 15. Overall architecture of Serpens within [57].

Serpens [57] facilitates streaming transfer of sparse matrices utilizing HBM. To achieve sequential
access to off-chip memory, Serpens customizes the read pattern for the dense vector x and the
accumulation method for vector y. As illustrated in Figure 15, in Serpens, the dense vector x is
divided into segments, with only one segment of x transmitted and stored in BRAM at a time.
Subsequently, corresponding segments of the sparse matrix A are streamed in, using UltraRAM
(URAM) as an accumulation buffer for accumulating results. Iteratively processing segments of
x minimizes communication with off-chip memory. Compared to sparse matrices, dense vectors
are smaller in size, so each dense vector is allocated an HBM channel, while 16 HBM channels are
designated for sparse matrices. Each HBM channel is connected to a read (Rd) or write (Wr) module,
facilitating streaming access to off-chip memory. PEs perform vector multiplication, and an arbiter
selects computation results from 16 PEs to send to the Comp Y module, which accumulates these
results. Serpens leverages the HBM memory channels for high-throughput processing of sparse
matrices.

Du et al. [13] propose an innovative storage approach for sparsematrices, focusing on partitioning,
streaming, and packaging into a new format to optimize the use of HBM bandwidth for sparse
matrix access. As matrix sizes exceed on-chip memory capacity, they partition matrices row-wise
and column-wise based on vector buffer and output buffer sizes. Streaming involves cyclically
distributing rows to PEs while forming a data stream for rows assigned to the same PE. They insert
next-row markers at each row’s end to signal row transitions and skip empty rows. Element streams
are then packed into data packet streams stored in HBM channels, accessed by clusters of PEs.
They propose an on-chip buffer area design, shown in as Figure 16. In a cluster, all PEs share a
dense vector buffer, with vector buffer access units handling requests for the vector buffer group.
Input vectors are duplicated across different clusters. Two shuffle units handle vector buffer access
unit requests and responses, dynamically solving bank conflicts by reordering payloads in input
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Fig. 16. Shuffle unit with explicit control logic within [13].

Fig. 17. The design within GraphLily [26]: (a) CPSR sparse matrix storage format with two HBM channels;
(b) architecture of the SpMV accelerator. CPSR, cyclic packed streams of rows.

channels, incorporating a pipelined arbiter and resend logic for enhanced efficiency and conflict
resolution.
GraphLily [26] specifically proposes a sparse matrix storage format for HBM, named Cyclic

Packed Streams of Rows (CPSR). A figure exemplifies four packed row streams across two
HBM channels, where eight parallel rows are grouped into four sets. CPSR comprises only two
arrays: one for nonzero values and the other for the corresponding column indices. End-of-row
markers are inserted to signal the conclusion of each row. For instance, in HBM channel 1, as
shown in Figure 17(a), elements from two streams are alternately placed until both streams are
depleted. Virtual elements are added to the shorter stream for alignment, enabling parallel operation
of four PEs. Figure 17(b) displays the SpMV accelerator’s architecture, including a set of HBM
channels, multiple PE clusters, and an output buffer. Each cluster is connected to an HBM channel.
To minimize random off-chip accesses to the dense vector, each PE cluster contains a Cluster
Shared Vector Buffer (CSVecBuf). This buffer is cyclically partitioned into K banks, each cycle
supplying a vector value to K PEs. CSVecBuf, integrating vector replication and storage, can provide
data to a large number of PEs.

Jiang et al. [29] propose an optimized design for a systolic array architecture on FPGA platforms,
tailored for sparse deep learning models. They suggest replacing traditional compressed format
indices of nonzero values with a sparse bitmap, as shown in Figure 18(a). In this bitmap, the
binary code 0 and 1 indicate the positions of zero and nonzero numbers, respectively. During index
matching, only input data corresponding to the positions marked with 1 are extracted. To address
the unpredictability of a given sparse matrix’s sparsity, a dual-buffer structure is employed. One
buffer sends data to the PE array only when it is full, while the other buffer stores overflow data, as
shown in Figure 18(b). For enabling OpenCL kernels to access multiple HBM2 pseudo channels,
they duplicated input reader and filter reader kernels. This allows each duplicated instance to
read partitioned data from different HBM2 pseudo channels, thereby accelerating memory-bound
operations in the computing, as shown in Figure 18(c).
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Fig. 18. The design within [29]: (a) representation of locations of zero and nonzero numbers with sparse
bitmaps; (b) compression of input feature maps based on filter sparse bitmaps; (c) overall architecture of
proposed optimization of sparse CNN accelerator.

Fig. 19. The b8c encoding of sparse matrices within [47]. b8c, block-8 compress.

Oliver et al. [47] propose a novel encoding format named Block-8 Compress (b8c) and im-
plement its corresponding hardware architecture using OmpsS@FPGA and HLS. For matrices
exceeding memory size, a preprocessing step is involved. The matrix is partitioned into vertical
blocks of size C, with C determined by the off-chip memory’s data path width and the size of
nonzero elements. The process then attempts to merge sparse rows, ensuring the row distance does
not exceed an adjustable parameter, and that they are non-overlapping. The merged structure is
illustrated in Figure 19(b). The b8c metadata also includes the matrix values in the Values struc-
ture, along with a set of metadata associated with each super-row ('>F�0B4 , '>F�4;C0, �>;�0B4)
and metadata for the entire sub-block (�8ABC'>F , �8ABC�>; , !4=6Cℎ). This representation facilitates
conflict-free access to the matrix. Storing b8c super-rows continuously in memory allows for
streaming data processing, reducing associated access delays.
Li et al. [37] design a row merging algorithm to enhance data locality between rows. This

algorithm iterates through all rows, grouping together those with similar counts of nonzero
elements and significantly overlapping column indices. For groups with rows of varying lengths,
shorter rows are padded with zero elements to equalize their length. This approach not only
increases data density by reorganizing nonzero rows but also improves the buffer hit rate for vector
indices. The algorithm then assigns different row groups to various PEs for parallel processing.
Each PE efficiently accesses matrix data through its local HBM Pseudo Channel. In every PE, a
private L1 cache is integrated. When column indices become memory access addresses, requests
are initially directed to the L1 cache. If there’s a cache miss, the request is then sent to the shared
L2 cache. This dual-cache structure effectively utilizes the locality of vectors, enhancing both data
efficiency and access speed.
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Fig. 20. Decomposing SpMV pipeline into modular blocks communicating over elastic channels within [28].

Jain et al. [28] propose an SpMV accelerator design that utilizes limited on-chip resources while
fully leveraging available bandwidth.This approach incorporates the concept of modular Intellectual
Property blocks. As shown in Figure 20, the SpMV accelerator comprises various building blocks,
each designed as a modular component. This modularization allows for a flexible and scalable
architecture, enabling the accelerator to adapt to different hardware constraints and performance
requirements. The 2 × 2 switches of noc_0 and noc are used to construct a Network on-Chip
(NoC), consisting of four elastic buffers, two 2-way split units (S2), and two 2-way merge units
(M2). The multistage switching network formed by these 2 × 2 switches in the NoC enables inputs
of nonzero values with any column index to be routed to any port and indexed to one of the
appropriate output ports. The Banked Vector Buffers (bvb)<0-7> modules are used for storing
input vector groups and as input buffers for multiplication operations in the SpMV accelerator, with
the size of the bvb being selectable based on matrix dimensions. The combination of NoC and bvb
in the switching network allows for irregular indexing and increased throughput by keeping vector
elements on-chip. The lsa module is a Load Store Adapter used for controlling data movement,
enhancing the design’s flexibility and managing the connection between the HBM channels and the
SpMV accelerator. The hrb<0-7> units areHazard Resolving Backpressure (HRB) units that can
handle dependencies between data. One challenge in achieving high performance is accumulating
values provided in consecutive clock cycles to a deeply pipelined adder. However, due to data
dependencies, it’s necessary to wait for earlier data to complete addition before accumulating
subsequent data. The HRB uses shift registers to track all active indices and compares incoming row
indices with values in the register. If they do not match, the HRB moves and accumulates; if they
match, the HRB waits for the conflicting index to clear from the register before accepting a new
pair of index values. The acc<0-7> modules are accumulators (ACC) used for storing output vector
groups and performing accumulation operations. The b_A0, b_A1, and b_x modules are stream
splitters that can divide a wide stream into multiple narrower streams. The monitor module is used
to count nonzero data packets flowing through the pipeline and can immediately output results
after processing the last nonzero packet. This modular and lean architecture allows the accelerator
design to fully utilize available bandwidth and provides potential for scalability.

4.4 Parallel Computing Efficiency
4.4.1 Load Balancing. Parallel computing serves as a promising solution for achieving HPC.

However, without achieving load balancing among parallel computing units, it will lead to high
idleness and computing resource wastage in these units [42]. In SpMM, each computing unit is
tasked with processing a varying number of nonzero elements. Several optimization strategies
are dedicated to achieving load balancing among computing units [24]. For instance, task division
algorithms are employed to evenly distribute matrix multiplication tasks among different computing
units, ensuring a relatively balanced workload [10]. Additionally, dynamic load balancing techniques
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Fig. 21. The nonzero dispatch process within Sextans [58].

Fig. 22. The design within Serpens [57]: (a) eight PE processing units; (b) example of data rearrangement,
assuming a DSP delay of 2.

can be considered, which adjust the distribution of computational tasks in real-time, based on
current computational demands and resource utilization.
To enhance load balancing in SpMM, Sextans [58] applies a novel approach to matrix A by

dividing and recompressing it, aiming for an approximately uniform distribution of nonzero points.
This methodology is crucial in circumventing Read-after-Write (RAW) dependencies, especially
when assigning values from various rows to the same processing unit. Sextans introduces a unique
PE-aware nonzero scheduling algorithm centered on a specific cycle interval, D. This interval is
used to schedule nonzero elements in the earliest possible cycle, ensuring their row indices do
not have any RAW dependencies and have been in processing for the past D cycles. As depicted
in Figure 21, with a RAW dependency distance of 4, nonzero elements with identical row indices
are indicated in the same color. During the initial four cycles, nonzero elements with distinct
row indices are sequentially scheduled. Conflicts, such as between the yellow (2,1) and yellow
(2,0), are resolved by scheduling them in the earliest subsequent cycle, such as the fifth one, and
the resultant gaps or bubbles are efficiently filled with nonconflicting entries like blue (0,2). This
approach of PE-aware nonzero value scheduling significantly contributes to maintaining an II=1
pipeline, thereby facilitating the parallelism of SpMM computations.

Serpens [57] addresses the challenge ofmodule access acrossmultiple HBM channels by allocating
sparse elements from one channel to eight PEs. Each PE performs a segment of the SpMV A×G .
As shown in Figure 22, since each BRAM features two ports and accommodates four duplicated
segments of the dense vector G , it enables two PEs to share one BRAM, thereby resolving potential
conflicts in storage access. Additionally, each PE operates with distinct URAM addresses, preventing
bank conflicts in URAM that could arise from concurrent access by multiple PEs. Serpens further
optimizes the process by merging two values with adjacent target row indices into a single URAM
address. This strategy not only streamlines the reordering of nonzero elements but also effectively
manages RAW conflicts, thus enhancing the computational efficiency of the architecture.
Li et al. [33, 36] propose an FPGA-based architecture to accelerate SpMM using the Gustavson

method. This design effectively tackles the load imbalance in Gustavson’s parallel approach by
implementing parallel processing of matrix A’s elements within each row, rather than parallelism
across rows. Each PE sequentially handles elements from matrix A and employs a pipelined
approach to merge intermediate results. Specifically, these results are temporarily stored in each
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Fig. 23. The propose partitioning approach [16]: (a) divided into multiple sparse tiles according to equal
values; (b) merging of partial result.

merger’s local buffer. When a new row begins processing, these buffered results are forwarded to
a final merger unit. This final merger combines four partial results using two auxiliary mergers
and subsequently writes the combined output to DDR memory. During the merge, it compares the
first elements’ column indices in both input streams to check if they represent the same position.
If they match, a merge occurs; if not, the element with the lesser column index is moved to the
output stream. This approach of parallel processing at the element level minimizes the idle time of
PEs, thereby enhancing the efficiency of the entire matrix multiplication operation.

Gao et al. [16] propose an accelerated SpMM architecture for GNNs, incorporating a partitioning
approach that divides sparse matrices into equal-value partitions for balanced dataflow. As shown
in Figure 23(a), this method splits CSR-formatted sparse matrices into multiple tiles based on their
storage sequence, with each tile containing an identical number of nonzero elements. These tiles
are sequentially transferred to on-chip buffers for processing. Unlike two-dimensional (2D) block
partitioning, equal-value segmentation is more suited for highly sparse and imbalanced graph
data. During the multiplication phase, nonzero elements are processed in parallel, as each sparse
matrix element’s multiplication with a dense matrix row is independent. The merging phase is
responsible for accumulating the partial results from multiplication. As depicted in Figure 23(b),
nonzero elements within a tile are multiplied with corresponding rows in PEs. The partial results
generated are routed to merging units based on their row indices, ensuring workload balance
throughout the computation.

Li et al. [37] propose a row assignment algorithm designed to distribute nonzero elements evenly
across PEs for computation. The algorithm features a scoring system based on the current status of
the PEs. It establishes an ideal workload for each PE as the scoring benchmark. When allocating a
group of nonzero rows to a PE makes it more aligned with this benchmark, the allocation scores
higher. The algorithm also awards additional points if there is a locality association between the
row group and the PE. This method balances load distribution while considering data locality.

Chen et al. [5] propose an efficient parallel computing method for symmetric SpMV.The previous
approach, illustrated in Figure 24(b), struggles to avoid row-wise imbalance, leading to resource and
power wastage. The ideal solution for balancing rows, shown in Figure 24(c), requires thorough data
analysis and packaging, consuming significant computational resources. To address the imbalance
in row-wise computations, eSSpMV employs a pipelined approach. As depicted in Figure 24(d),
data from n rows are allocated to n computing units. Once the computation is completed, the n+1
row data are immediately fed in for processing. During this operation, since the matrix is an upper
triangular matrix, the number of nonzero elements per row gradually decreases, helping to balance
the workload across different computing units to some extent.

4.4.2 Unified PE Architecture. For efficient matrix multiplication on FPGAs, designing an
unified PE architecture offers significant benefits. This approach leverages FPGA flexibility to
balance computational workloads across a computing module. Such a design streamlines resource
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Fig. 24. Different parallelization strategy within [5]: (a) a symmetric sparse matrix; (b) row-based paralleliza-
tion; (c) ideal parallelization; (d) pipeline-based parallelization.

Fig. 25. Architecture of MACC within SkeletonGCN [64].

management, fostering adaptability and compatibility. Consequently, this strategy provides a
flexible solution for diverse matrix multiplication applications in HPC environments.
Wu et al. [64] introduce a GCN accelerator named SkeletonGCN, featuring a unified PE archi-

tecture suitable for SpMM, GeMM, andMatrix Multiplication with Transposed (TMM). This
architecture primarily consists of a MACC array, where MACC units in each row share the same
input. For SpMM, as shown in Figure 25, they employ three independent RAMs to store the CPCOO
format, including Header, 2>; , and E0; . The Header RAM’s E;3 signal activates the address counter
for generating addresses in the Body RAM, while B>A and 4>A signals manage the start of new
row computations and the saving of results. The corresponding dense data reside in Multibank
RAM, indexed by the column values of nonzero elements in the Column Pos RAM. Owing to a
fully pipelined architecture, the MACC units remain active for most SpMM computation cycles,
ensuring high DSP efficiency. For GeMM and TMM operations, they add an extra data distribution
module to manage the dataflow in these computations.

Zhang and Prasanna [69] propose Dynasparse, a software-hardware co-design accelerator capable
of supporting various sparsity levels in data and GNN models. Dynasparse executes three computa-
tional modes on FPGA: GEMM, Sparse-Dense Matrix Multiplication (SpDMM), and SpMM,
along with sparsity analysis and format conversion tasks. Figure 26 illustrates the architecture
under these three different computation modes. Each buffer in the system consists of %B~B banks
for parallel on-chip storage access. In the GEMM mode, the Arithmetic Logic Unit (ALU) array
is organized into a 2D systolic array, executing GEMM using an output stationary dataflow. This
systolic array can perform %2B~B MAC operations per clock cycle. For SpDMM mode, the ALU array
is divided into %B~B/2 Update Units and %B~B/2 Reduce Units. Nonzero elements of the sparse matrix
X from Buffer U are read and sent to the Index Shuffle Network, then routed to Buffer O to read the
dense matrix Y, forming input data pairs. The Update Units perform element-wise multiplication
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Fig. 26. Different execution modes of the computational core within [69]: (a) GEMM; (b) SpDMM; (c) SPMM.

Fig. 27. Architecture of PE arrays within LW-GCN [60].

to generate intermediate results, which are then accumulated by the corresponding Reduce Units.
The SpDMM mode can execute %2B~B/2 MAC operations per clock cycle. In the SpMM mode, the
ALU array is organized into parallel Sparse Computing Pipelines (SCP). Each SCP contains two
ALUs for nonzero element multiplication and intermediate result merging, with a SparseQueue
responsible for storing intermediate results. Following a row-product computation rule, one SCP
is allocated to compute one row of the output matrix. The SpMM mode can execute %B~B MAC
operations per clock cycle. The coupling and switching between these three modes effectively
leverage the data sparsity in GNN inference, reducing inference latency.
Tao et al. [60] propose that GeMM is essentially SpMM with a density of 100%. Based on this

concept, they designed a unified PE architecture to efficiently handle both GeMM and SpMM.
As shown in Figure 27, a memory selector and data distributor appropriately schedule the data.
Sparse data, compressed in the PCOO format, are streamed directly to the PE. The PCOO decoder
and bit indicates valid route the data to the corresponding multipliers, with ($' and �$' signals
indicating the start and end of a row, respectively, to differentiate multirow scenarios. The �$'
signal controls address generation for storing current results into the output buffer. During MM
processing, the B?0AB4_5 ;06 is set to 0.
Graph-OPU [4] specifically design a PE unit and a selection adder tree compatible with the

OPCOO format, to increase the efficiency of both SpMM and GEMM. Figure 28(a) showed the
architecture of computational engine. Graph-OPU duplicates sparse elements and tiles dense vectors
to achieve efficient execution of SpMM and can be extended to GEMM. As shown in Figure 28(b), PE
units are connected to a selective adder tree that determines whether the products from different PE
units need to be summed up by means of the 4>A signal, which ensures that the results of each row
element are correctly outputted. The architecture of computational engine achieves full pipeline
and allows switching to two different modes, SpMV and GEMM.
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Fig. 28. Fully pipelined general purpose computing engine in Graph-OPU [4]: (a) the architecture of compu-
tational engine; (b) the architecture of PE units is connected to a selective adder tree.

5 Comparison of Recent FPGA-Based SpMM Accelerators
To provide readers with a more direct understanding through data about these FPGA-based SpMM
accelerator designs, we compare them in this section. The comparison is mainly divided into two
parts: the hardware resource consumption and the performance comparison.

5.1 Hardware Resource Consumption
Resource consumption is a crucial metric for evaluating the design of FPGA-based accelerators.
We evaluate and statistically compare the resource consumption of the mentioned sparse matrix
multipliers based on different design architectures, as depicted in Table 5. Our primary focus includes
Lookup Table (LUT), Flip-Flop (FF), DSPs, BRAM, and URAM. LUTs, which can implement any
logic function, indicate the usage of logical resources. The consumption of FFs reflects the design’s
timing requirements and storage demands. DSPs are crucial for executing key computational
tasks like multiplication and addition. The use of BRAM and URAM indicates the on-chip storage
capacity needed by the architecture. The data are derived from the corresponding descriptions
in their respective articles. It should be noted that for accelerator design architectures that only
provide the percentage of consumed resources, we calculate the actual resource consumption
based on the logic resources configured in their implementation devices. Gao et al. [16] deploy two
versions of design prototypes, corresponding to fixed-point and floating-point data types. In this
context, we only provide the resource consumption data for the floating-point data accelerator. The
#� in the table indicates that the relevant data are not mentioned in the original articles.

Overall, most SpMM accelerators operate around a frequency of 200 MHz. The highest operating
frequency is achieved by [28] at 310 MHz, benefiting from its elastic communication between
modules, facilitating the design’s timing closure. The studies by [33, 36, 40] have a frequency of only
100 MHz, possibly due to their choice of edge FPGA, the ZCU106. Serpens, aiming to accommodate
the 450 MHz frequency of HBM, sets its computational frequency at 223 MHz, maximizing the
utilization of HBM’s bandwidth.
In terms of resource consumption, Dynasparse [69] is the design with the highest resource

usage among all accelerators. This is because Dynasparse implements a unified accelerator on
FPGA capable of executing various computational primitives and develops efficient hardware
mechanisms for analyzing data sparsity and performing real-time data format conversion. This
endows Dynasparse with greater versatility and scalability.
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Table 5. Frequency and Resource Consumption of Multipliers

Multiplier Vintages Device Calculation Frequency (MHz) LUT FF DSP BRAM URAM Max cols/rows

Li et al. [33, 36] 2023 Xilinx Zynq-UltraScale ZCU106 SpMM
(Gustavson) 100 152K 203K 46 201 60 23,560

Liu and Liu [40] 2023 Xilinx Zynq UltraScale ZCU106 SpMV 100 171K 86K 43 93 70 281,903
Jain et al. [28] 2023 Xilinx Alveo U280 SpMV 310 500K 1,178K 644 460 384 14,734
Li et al. [35] 2023 Xilinx Zynq UltraScale ZCU106 SpMV 100 175K 178K 258 153 NA 217,918

Dynasparse [69] 2023 Xilinx Alveo U250 GEMM/SpDMM/SpMM 250 1,728K NA 12,288 2,688 960 232,965
eSSpMV [5] 2023 Xilinx Zynq XCZU7EV SSpMV 250 3,494 5,621 1,024 61.5 NA 41,731

Oliver et al. [47] 2023 Xilinx Alveo U280 SpMV 250 398K 490K 1,353 669 71 52,329
ReMCOO [43] 2023 Xilinx Zynq UltraScale+ ZCU104 SpMV NA 17K 1,268 5 10 NA 331
Graph-OPU [4] 2023 Xilinx Alveo U50 SpMM/GEMM 225 475K 427K 2,742 927K NA 45,954

Sextans [58] 2022 Xilinx Alveo U280 SpMM
(Outer product) 189 379K 690K 3,316 3,086 768 5,133,551

Serpens [57] 2022 Xilinx Alveo U280 SpMV 223 173K 327K 720 655 384 108K
GraphLily [26] 2022 Xilinx Alveo U280 SpMV/SpMSpV 165 390K 493K 723 417 512 2,997K
Du et al. [13] 2022 Xilinx Alveo U280 SpMV 237 544K NA 688 128 512 2,449K
Li et al. [37] 2022 Xilinx Alveo U50 SpMV 237 NA NA NA NA NA 345,241
LW-GCN [60] 2022 Xilinx Kintex-7 K325T SpMM/GEMM 200 161K 94K 512 291.5 NA 19,717

SkeletonGCN [64] 2022 Xilinx Alveo U200 SpMM/GEMM/TMM 250 1,021K NA 4,460 1,338 598 2,000

Gao et al. [16] 2021 Xilinx Alveo U280 SpMM
(Gustavson) 200 623K 793K 2,251 1,163 896 65,755

FSpGEMM [61] 2021 Intel Arria 10 GX 1150 SpGEMM
(Gustavson) 236 256Ka 717Kb 547 NA NA 1,000K

Jiang et al. [29] 2021 BittWare 520N-MX SpMM 257 NA NA 1,142 NA NA NA
Hosseinabady and Nunez-Yanez [23] 2020 Xilinx ZCU102 SpMV/SSpMV 200 38K 70K 56 876 NA 39,900

Pligouroudis et al. [51] 2020 Intel Stratix IV GX SpMV 289.77 NA NA NA NA NA 500

a Intel FPGAs in Adaptive Logic Modules (ALM).
b Intel FPGAs in ALM Registers.

5.2 Performance Comparison
In assessing FPGA-based SpMM accelerators, throughput and power consumption are key metrics
for assessing system performance.Throughput represents theworkload completed by the accelerator
per unit of time, directly reflecting its efficiency and performance. The throughput is calculated as

)ℎA>D6ℎ?DC = %/C (�$%(), (7)

where % is the problem size and C is the execution time [58]. Power consumption, on the other
hand, indicates the relationship between the accelerator’s resource usage and energy expenditure,
highlighting differences in architectural design. An effective FPGA-based accelerator design must
strike a balance between performance and power consumption. We attempt to assess and compare
the performance of various FPGA-based SpMM designs previously mentioned. Throughput data
are obtained from the respective articles. For some designs that are open source but not directly
discussed in the articles, we conducted tests using their reported development boards and recorded
the relevant data. For power consumption, we standardized the measurement using the Xilinx
Power Estimator [66] and Xilinx Board Utility [65] to obtain their power data. This approach
is due to the variance in power consumption reporting methods across different articles. Some
report the power consumption of the FPGA chip, while others report the entire board-level power
consumption.
Following the statistical methodology of [19], Figure 29 presents a performance comparison of

different accelerator designs.The horizontal axis represents power consumption (W), and the vertical
axis indicates throughput (GOPS). For clarity, the values in the graph have been scaled using log10.
Due to its design incorporating rapid random access and PE-aware nonzero scheduling, Sextans
[58] achieves the best performance with a peak throughput of 5,796.2 GOPS. The preprocessing
of nonzero elements in Sextans, which masks the inherent data dependencies and combines with
the high data bandwidth of HBM, further enhances its performance. The throughput of LW-
GCN is estimated based on the inference latency for the Cora dataset. The focus of LW-GCN on
optimizations specific to graph data might contribute to its relatively lower throughput. Oliver et al.
[47] shows the highest power consumption, attributed to its unique design optimized for 64-bit
processing, which considerably increases its resource usage. eSSpMV [5] and Hosseinabady and
Nunez-Yanez [23] demonstrate balanced performances, owing to their specific optimizations for
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Fig. 29. A comparison between different designs on a logarithm COO of power and performance.

symmetric sparse matrices, which effectively reduce their computational load to a portion of the
matrix. Their use of edge FPGAs also explains their lower power consumption.

6 Prospects
We believe that the demand for SpMM computation will emerge in more fields. Several of the above-
mentioned articles also talk future research and specific applications. They hope to leverage the
reconfigurable advantages of FPGAs to design more efficient computing architectures that can adapt
to the varying characteristics of sparse matrices and maximize hardware performance. For instance,
Gao et al. [16] anticipate exploring efficient architecture designs tailored to GNN models based on
their proposed framework. In FlightLLM [67], to achieve FPGA-based LLM inference acceleration,
a configurable sparse DSP chain is proposed for the SpMM process to reduce hardware overhead
while supporting sparse reduction. They believe that FPGAs are promising candidates for efficient
LLM inference. Jiang et al. [29] presented a preprocessing method for sparse matrices, aiming for
its application not only in sparse filters but also in feature maps of sparse CNN models to further
optimize sparse convolutions. Moreover, diversity and scalability are also crucial directions for
future research. For example, ReMCOO [43] introduced a new method to represent sparse matrices
and vectors and implemented it in FPGAs. They expect that future research could use the newly
proposed sparse matrix vector representation to study the performance of very large SpMVs on
GPU platforms. Furthermore, Zhang and Prasanna [69] proposed Dynasparse, a hardware-software
co-design for dynamic sparsity utilization in GNN inference. In the future, it is hoped that this can
be extended to heterogeneous platforms composed of CPUs, GPUs, and FPGAs. Here, we propose
several specific or broad potential directions for future FPGA-based SpMM designs.
Optimization of Compressed Formats. Various storage compression formats, such as CSR, CSC,

and COO, have been proposed to reduce memory overhead. However, these formats do not al-
ways provide sufficient support for HPC in SpMM in specific applications. Designing new matrix
compression formats to overcome the limitations of existing ones is a research direction with
practical application value. Additionally, developing assessment models to analyze the advantages
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and disadvantages of each compression format in different applications can provide crucial guidance
for kernel developers in these applications, representing a potential contribution to the field.

Reducing Data Preprocessing Overhead. To mitigate the complexity of sparse structures and more
efficiently utilize FPGA computational resources, optimization algorithms such as matrix compres-
sion, matrix blocking, and load balancing strategies have been developed. However, preprocessing
often incurs additional costs, as it requires extra computation and resources. Typically, the cost of
converting to a matrix compression format rivals that of accelerating SpMM computations [8]. If
data preprocessing cannot balance the benefits with the additional resource overheads, it cannot
truly aid in accelerating sparse matrix operations, even if it makes computations more hardware-
friendly. Therefore, exploring ways to reduce data preprocessing overhead, or even avoiding it
through hardware-aware design, is a topic worth investigating in the design of SpMM accelerators.
Efficient Memory Access Strategies. As memory-intensive applications, SpMM is constrained by

memory bandwidth, leading to widespread adoption of HBM in SpMM accelerators. However,
achieving efficient access to HBM on FPGAs is challenging. FPGA on-chip logic can globally address
HBM via standard AXI interfaces, but concurrent multichannel access to the sparse data stored in
HBM can lead to substantial access conflicts. This increases the latency of AXI read/write transac-
tions and reduces accelerator performance. Recent works have reduced redundant computations in
networks through techniques like network pruning. However, this often results in both matrices
involved in the multiplication being considered sparse, exacerbating the irregularity of memory
access. In accelerating SpMM on FPGAs, a critical area of research is how to fully exploit the
temporal and spatial locality of memory access to enhance memory access efficiency.
Balancing the Workload across Computing Units. This challenge spans multiple levels, encom-

passing coarse-grained task distribution among computational units, fine-grained data allocation
within individual units, and data-level SIMD operations. In SpMM, the approach to scheduling at
various levels significantly influences the equilibrium of computational workloads. In the context of
coarse-grained parallelism, where multiple hardware logic units process data concurrently, the chal-
lenge lies in effectively breaking down tasks into manageable segments and judiciously assigning
resources. In fine-grained parallelism, which operates at more elementary units, it becomes essential
to devise strategies for organizing and managing a multitude of smaller tasks to execute parallel
computations efficiently. For FPGA-accelerated SpMM, the creation of sophisticated scheduling
algorithms is paramount. These algorithms should dynamically assign tasks to computational units
of different granularities, based on an in-depth understanding of task characteristics and resource
availability. Such adaptive algorithms aim to optimize task allocation dynamically, thus achieving a
balanced workload distribution in an HPC environment.
Optimizing for Specific Dataflows. The choice of dataflow greatly impacts memory access and

computational burdens [22, 58]. The Inner Product method facilitates tiled computation and exhibits
high spatial locality in memory, yet suffers from low data reuse rates in large sparse matrices. The
Outer Product paradigm, aligning with the conditions for DSP packing (an optimization technique
in FPGA design), can achieve higher DSP efficiency. Gustavson’s method significantly reduces
operands in SpMM and directly produces an entire row of the output matrix, facilitating efficient
coupling with downstream tasks. However, Gustavson’s approach makes memory access more
challenging, as it renders both temporal and spatial locality of memory access unpredictable.
When computing SpMM in specific application scenarios, selecting the appropriate dataflow and
customizing corresponding memory access patterns and architectures are vital for performance en-
hancement. We anticipate that future explorations will leverage application-specific characteristics
more effectively, improving the efficiency of SpMM in targeted applications.

Optimizing for Specific Applications. There are an increasing number of applications whose com-
putational processes involve SpMM, making specific optimizations crucial. For example, there
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are special forms represented by symmetric sparse matrices in recommendation systems. How to
perform specific optimizations for these while ensuring minimal resource overhead and compat-
ibility with general SpMM computation will be a key problem to address. Additionally, in NLP
applications such as Transformer, there are numerous matrix computations, including sparse-dense,
sparse-sparse, and dense-dense multiplications. Designing efficient and low-resource-consumption
PEs to handle these computations will also be a significant concern.

7 Conclusion
SpMM has always been a fundamental computational process in HPC.The rise of large-scale models
like ChatGPT further underscores the importance of SpMM. General-purpose CPUs and GPUs
struggle with fine-grained SpMM optimization, which presents a significant opportunity for FPGA
platforms but also imposes greater demands and challenges. Designers face multifaceted challenges,
ranging from matrix storage and memory access to parallel computations. In this article, we first
categorize the challenges faced by FPGA-based SpMM accelerator designs into four types; then
we summarize the existing work on how FPGAs effectively address these four types of challenges;
finally, we propose further optimization directions and application prospects for FPGA-based SpMM
designs. We hope that this article will attract more researchers to focus on this field. This interest is
expected to enable FPGAs to continue providing efficient solutions for HPC, especially in the realm
of SpMM.
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Appendix
A Abbreviations

Table A1. Abbreviations and Meanings Appearing in This Document

Abridge Hidden Meaning Abridge Hidden Meaning
ACC Accumulators ISN Index Shuffle Network
ALU Arithmetic Logic Unit LSA Load Store Adapter
ASICs Application-Specific Integrated Circuits LLM Large Language Model
AIGC Artificial Intelligence Generative Content LUT Lookup Table
182 Block-8 Compress MAC Multiplication and Accumulation

BRAM Block RAM MCSR Modified Compressed Sparse Row
BV Bit-Vector NLP Natural Language Processing
CBV Compressed Bit-Vector nzz Nonzero Elements
C2SR Cyclic Channel Sparse Row NoC Network on-Chip
COO Coordinate OPCOO Optimized PCOO
CNNs Convolutional Neural Networks PCOO Packet-Level Column-Only Coordinate-List
CPCOO Compact PCOO PEGs Processing Engine Groups
CPUs Central Processing Units PEs Processing Elements
CSC Compressed Sparse Columns RAW Read-after-Write
CSR Compressed Sparse Rows ReMCOO Redundant Modified Coordinate
CSV Compressed Sparse Vector SCP Sparse Computing Pipelines

CSVecBuf Cluster Shared Vector Buffe SCSR Symmetric Compressed Sparse Row
CVBV Compressed Variable-Length Bit-Vector SOTA State-of-the-Art
DRC Data Reuse-Aware Compression SpDMM Sparse-Dense Matrix Multiplication
DSPs Digital Signal Processors SPs Stream Processors
DGL Deep Graph Library SpGEMM Sparse Matrix-Matrix Multiplication
EB Elastic Buffers SpMM Sparse Matrix Multiplication
FF Flip-Flop SpMV Sparse Matrix-Vector Multiplication

FPGA Field-Programmable Gate Arrays SQ SparseQueue
GANs Generative Adversarial Networks SSpMV Symmetric Sparse Matrix-Vector Multiplication
GEMM General Matrix Multiplication SSS Symmetric Sparse Skyline
GNNs Graph Neural Networks TMM Matrix Multiplication with Transposed
GPUs Graphics Processing Units TPU Tensor Processing Unit
HBM High-Bandwidth Memory URAM Ultra RAM
HPC High-Performance Computing VAUs Vector Access Units
HRB Hazard Resolving Backpressure units VCs Virtual Channels
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