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Abstract—Real-time track reconstruction in high energy
physics imposes stringent latency constraints, hindering the
deployment of graph neural networks (GNNs) on general-purpose
platforms. We present TrackGNN', an open-sourced GNN accel-
erator for track reconstruction. Using a dataflow architecture
with multiple parallelism and a self-adaptive renaming mecha-
nism, TrackGNN shows 27.6 x speedup over CPUs, up to 101.1x
over GPUs, and 5.7x over an FPGA overlay. Compared with
FlowGNN, the renaming mechanism also reduces end-to-end
latency by 1.12-1.16 x with negligible resource overhead.

I. INTRODUCTION

GNNs have emerged as a promising approach for track
segment classification during track reconstruction, a process
to determine track segments produced by the same particle.
However, running real-time GNN inference on CPUs and
GPUs is challenging due to strict latency constraints. Our
work presents an FPGA-based dataflow accelerator for track
reconstruction with microsecond-scale latency.

II. ARCHITECTURE AND EXPERIMENTS

The GNN for track reconstruction accepts clustered hits
as an over-connected graph, filtering the outliers and keeping
the true hits produced by the same particle through message
passing. TrackGNN inherits its highly parallelized dataflow
architecture from FlowGNN [1]. As shown in Fig. 1, during
the graph loading phase, graph data are streamed through the
Node Network and Edge Network in parallel. The dataflow
is managed by an Adapter Queue that multicasts the node
embeddings to edge processing units.

However, irregular node ordering frequently misaligns adja-
cency accesses. The key improvement of TrackGNN over the
original FlowGNN is a novel renaming mechanism illustrated
in Fig. 1. The renaming and reindexing process is dynamic and
scalable to different graph sizes. Consider the first 4 edges to
be processed in parallel are {(ng, n22), (ng,n23), (no,n24),
(n1,n92)}. We rename the node indices according to their
processing orders in the Edge Network. The updated adjacency
list becomes {(Tlo,nl), (no,ng), (no,ng), (n4,n1)}. The
renamed adjacency list and the updated embedding arrays
allow data to flow efficiently through the FIFOs, thus reducing
initiation delays and pipeline stalls.

We deploy TrackGNN on the AMD Alveo U50 FPGA, and
compare it against an AMD Ryzen 9 9950x CPU, a NVIDIA
GeForce RTX 4090 GPU, and a state-of-the-art FPGA-based
GNN Overlay [2]. Results are shown in Table I. The average
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Fig. 1: Renaming reduces initiation time and pipeline stalls.

TABLE I: Performance Comparison of TrackGNN

Metric CPU | GPU | Graph-OPU [2] | TrackGNN
Latency (us) 199 730 41.15 7.22
Power (W) 2692 | 68.5 15.5 13.37
Energy (mlJ) 5.37 50 0.64 0.097

TABLE II: Latency Comparison with FlowGNN [1].

Architecture | Average-sized Graph Large-Graph
FlowGNN 8.1us 14.16us
TrackGNN 7.22pus (1.12%) 12.17ps (1.16%)

latency of TrackGNN is 7.22us. TrackGNN achieves a 27.6 x
speedup over the CPU, up to 101.1x over the GPU, and 5.7 x
over the overlay, while consistently showing better energy
efficiency.

To study the performance boost from the self-adaptive
renaming, we further conduct an ablation study. From Table II,
for average-sized graphs (~20-70 nodes), TrackGNN achieves
a speedup of 1.12x over FlowGNN, and increases to 1.16x
for larger graphs(~70-300 nodes) because large graphs intro-
duce more data irregularities. The resource usage of DSPs
and BRAMs remains largely unaffected. The LUT and FF
consumption increased by only 3% and 6%, respectively.
However, the slight increase of less than 6% resource usage
is validated by up to 16.67% reduction in end-to-end latency.
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